Speaker
Apply to be<br> considered for a student <br> award (Yes / No)?
Yes
Abstract content <br> (Max 300 words)<br><a href="http://events.saip.org.za/getFile.py/access?resId=0&materialId=0&confId=34" target="_blank">Formatting &<br>Special chars</a>
A new model of non-reversal quantum walk is proposed. In such a walk, the walker cannot go back to previously visited sites but it can stay static or move to a new site. The process is set up on a line using the formalism of Open Quantum Walks (OQWs). Afterwards, non-reversal quantum trajectories are launched on a 2-D lattice to which a memory is associated to record visited sites. The "quantum coins" are procured from a randomly generated unitary matrix. The radius of spread of the non-reversal OQW varies with different unitary matrices. The statistical results have meaningful interpretations in polymer physics. The number of steps of the trajectories is equivalent to the degree of polymerization, N. The root-mean-square of the radii determines the end-to-end distance, R of a polymer. These two values being typically related by R &sim N&nu, the critical exponent, &nu, is obtained for N ≤ 400 . It is found to be closely equal to the classical Flory exponent. However, for larger N, the relationship does not hold anymore. Hence, a different relationship between R and N is suggested.
Main supervisor (name and email)<br>and his / her institution
Prof. F. Petruccione
petruccione@ukzn.ac.za
UKZN
Level for award<br> (Hons, MSc, <br> PhD, N/A)?
PhD
Please indicate whether<br>this abstract may be<br>published online<br>(Yes / No)
Yes
Would you like to <br> submit a short paper <br> for the Conference <br> Proceedings (Yes / No)?
Yes