4-8 July 2016
Kramer Law building
Africa/Johannesburg timezone
<a href="http://events.saip.org.za/internalPage.py?pageId=10&confId=86">The Proceedings of SAIP2016</a> published on 24 December 2017

Engineer inflation in realistic string compactifications

5 Jul 2016, 11:50
20m
2A (Kramer Law building)

2A

Kramer Law building

UCT Middle Campus Cape Town
Oral Presentation Track G - Theoretical and Computational Physics Theoretical and Computational Physics (1)

Speaker

Mr Luca Pontiggia (University of the Witwatersrand)

Would you like to <br> submit a short paper <br> for the Conference <br> Proceedings (Yes / No)?

No

Please indicate whether<br>this abstract may be<br>published online<br>(Yes / No)

Yes

Level for award<br>&nbsp;(Hons, MSc, <br> &nbsp; PhD, N/A)?

PhD

Abstract content <br> &nbsp; (Max 300 words)<br><a href="http://events.saip.org.za/getFile.py/access?resId=0&materialId=0&confId=34" target="_blank">Formatting &<br>Special chars</a>

We study slow roll inflation and invoke results from random algebraic geometry to construct a way of generating a variety of inflationary potentials, and then scan through these potentials to identify how many satisfy slow roll conditions. This is essentially done by searching for minimas in a polynomial based potential and then testing the slow-roll conditions. Based on the results of the analysis, we then want to be able to say something about the distribution of polynomials that give rise to inflation, and, if there are certain polynomial potentials (both of single and multifields) which favor slow-roll more than other polynomial potentials. Since we also want to engineer potentials in the context of particular Calabi-Yau compactifications, we need to not only scan for potentials but also infer properties of these compactifications by characterizing them. To do this we investigate the characterization of Calabi-Yau compactifications. This csn be done by characterization of the reflexive polytopes which are used to obtain Calabi-Yau geometries. To do this, we can look at how many Calabi-Yau geometries have a given set of $(h^{1,1}+h^{1,2}, h^{1,1}-h^{1,2})$ . The weighting of the number of reflexive polytopes for different values of $h^{1,1}$(number of K\"ahler moduli) and $h^{1,2}$(number of complex moduli) is given by the Kreuzer-Skarke database. It is from this database where we study the distribution of $h^{1,1}$ and $h^{1,2}$. Since it is a very rich database, we propose an initial statistical approach by making use of various data analysis techniques of the distributions of $h^{1,1} + h^{1,2}$ and $h^{1,1} - h^{1,2}$.

Main supervisor (name and email)<br>and his / her institution

Vishnu Jejjala
vishnu.jejjala@gmail.com
University of the Witwatersrand

Apply to be<br> considered for a student <br> &nbsp; award (Yes / No)?

Yes

Primary author

Mr Luca Pontiggia (University of the Witwatersrand)

Presentation Materials

There are no materials yet.