7-11 July 2014
Africa/Johannesburg timezone
<a href="http://events.saip.org.za/internalPage.py?pageId=16&confId=34"><font color=#0000ff>SAIP2014 Proceedings published on 17 April 2015</font></a>

Memory performance of ARM processors and its relevance to High Energy Physics

9 Jul 2014, 17:10
1h 50m
D Ring ground level

D Ring ground level

Board: B.116
Poster Presentation Track B - Nuclear, Particle and Radiation Physics Poster2

Speakers

Mr Gerhard Harmsen (University of the Witwatersrand) Mr Thomas Wrigley (University of the Witwatersrand)

Apply to be<br> considered for a student <br> &nbsp; award (Yes / No)?

Yes

Level for award<br>&nbsp;(Hons, MSc, <br> &nbsp; PhD)?

Hons

Main supervisor (name and email)<br>and his / her institution

Bruce Mellado, bruce.mellado@wits.ac.za

Would you like to <br> submit a short paper <br> for the Conference <br> Proceedings (Yes / No)?

Yes

Abstract content <br> &nbsp; (Max 300 words)<br><a href="http://events.saip.org.za/getFile.py/access?resId=0&materialId=0&confId=34" target="_blank">Formatting &<br>Special chars</a>

‘Big Science’ projects such as the to-be upgraded ATLAS detector at the Large Hadron Collider at CERN are expected to produce data in volumes which far exceed current system data throughput capacities. In addition, cost considerations for large-scale computing systems remain a source of general concern. A potential solution involves using low-cost, low-power ARM processors in large arrays in a manner which provides massive parallelisation and high rates of data throughput (relative to existing large-scale computing designs). Giving greater priority to both throughput-rate and cost considerations increases the relevance of primary memory performance and design optimisations to overall system performance. Using several primary memory performance benchmarks to evaluate various aspects of RAM and cache performance, we provide characterisations of the performances of three different models of ARM-based SoC, namely the Cortex-A9, Cortex-A7 and Cortex-A15. We then discuss the relevance of these results to high throughput-rate computing and the potential for ARM processors. Finally, applications to the upgrade of the on-line and off-line data processing at the ATLAS detector are also discussed.

Primary authors

Mr Gerhard Harmsen (University of the Witwatersrand) Mr Thomas Wrigley (University of the Witwatersrand)

Presentation Materials

There are no materials yet.

Peer reviewing

Paper