7-11 July 2014
Africa/Johannesburg timezone
<a href="http://events.saip.org.za/internalPage.py?pageId=16&confId=34"><font color=#0000ff>SAIP2014 Proceedings published on 17 April 2015</font></a>

Atomic scale simulation in the service of nuclear materials

8 Jul 2014, 11:10
20m
D Les 201

D Les 201

Oral Presentation Track A - Division for Physics of Condensed Matter and Materials DPCMM1

Speaker

Prof. Robin Grimes (Imperial College London)

Abstract content <br> &nbsp; (Max 300 words)<br><a href="http://events.saip.org.za/getFile.py/access?resId=0&materialId=0&confId=34" target="_blank">Formatting &<br>Special chars</a>

Our understanding of materials performance is based on experimental data. We use it to generate predictive models that allow us to develop improved materials and sometimes even select new materials or compositions. With nuclear energy related technologies, however, experimental data is often difficult to obtain either because the controlling factor takes place on time scales or length scales that are challenging or the hazard is such that facilities are not available. In these circumstances atomic scale computer simulations can be exceptionally useful.

We can use the results of simulation in four different ways. First, most simply, to provide property values for existing models and add context to experimental data – as we have for the potential burnable poison ZrB2. Second, to ‘check’ or ‘test’ existing assumptions such as the extent of defect volumes changes associated with fission product lattice defects. Third, to improve existing models by ‘developing’ the physical models – as with our understanding of the role that additives have on improving the durability of nuclear waste glass. Sometimes, however, it is possible to develop totally new models so the fourth approach uses simulations to ‘discover’ or ‘identify’ the physics/chemistry behind the process – here we will consider dislocation processes in UO2.

Thus, in this presentation we will consider these four issues in turn to illustrate how modelling and simulation adds value to the development of nuclear materials.

Level for award<br>&nbsp;(Hons, MSc, <br> &nbsp; PhD)?

PhD

Would you like to <br> submit a short paper <br> for the Conference <br> Proceedings (Yes / No)?

Yes

Apply to be<br> considered for a student <br> &nbsp; award (Yes / No)?

No

Primary author

Prof. Robin Grimes (Imperial College London)

Co-authors

Dr Michael Rushton (Imperial College London) Dr Paul Fossati (Imperial College London) Dr Samuel Murphy (Imperial College London)

Presentation Materials

There are no materials yet.