Speaker
Description
Abstract. A substantial number of experimental studies over the years have shown that many light-to-medium-sized and some rare-earth nuclei exhibit a Low-Energy Enhancement (LEE) in the Gamma Strength Function (GSF) [1,2,3,4 and references therein]. Within the Hauser-Feshbach formalism, the GSF and the Nuclear Level Density (NLD) play crucial roles in the estimates of nuclear reaction rates. It has been demonstrated that the presence of this LEE can significantly speed up astrophysical r-process reaction rates [5] for neutron-rich nuclei. This should be further researched because it would have a big impact on models of nucleosynthesis. Due to the difficulty in creating adequate targets, experimental data on the LEE for noble gas isotopes like 133Xe are also non-existent.
At the iThemba LABS, 132Xe (d,p) reactions in inverse kinematics were carried out with beam energy of 530 MeV in order to look for the LEE in the 133Xe nucleus. In conjunction with a silicon particle telescope that was used to measure the charged particles from the reactions, the AFRODITE and ALBA arrays were utilized to measure the gamma-rays. Eight high resolution germanium detectors, six large and six small volume LaBr3(Ce), and two S2 silicon strip detectors made up the array at the time of the studies. Particle-- events event extraction and the Ratio Method are being utilized to determine the GSF of 133Xe.
Level for award;(Hons, MSc, PhD, N/A)?
PhD
Apply to be considered for a student ; award (Yes / No)? | Yes |
---|