Speaker
Description
The impact parameter dependence (b = 0 – 19%) of different meson and baryon species at central rapidity and particle ratios in Pb+Pb was studied employing High Energy Heavy-Ion collisions at an incident kinetic beam energy (lab frame) of Eelb = 300 AGeV for a duration of t = 400 fm/c. The Pb+Pb reaction was simulated from the Ultra-relativistic Quantum Molecular Dynamics model (UrQMD). We employed the particle ratios technique to distinguish between hadronic cascade and hydrodynamical models, incorporating a QGP phase transition. The study will give an insight into the behaviors of particle production at different impact parameters leading to chemical freezeout and thermal equilibrium. This will open more windows when it comes to a better understanding of the phase transition of the hadron gas for different High Energy Heavy-ion collision systems. We report here on the results at central rapidity and above the saturation time, at a randomly chosen time of t = 380 fm/c, and also the particle ratio as a function of impact parameter at a different time t for both meson and baryon species.
Level for award;(Hons, MSc, PhD, N/A)?
PhD
Apply to be considered for a student ; award (Yes / No)? | yes |
---|