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Abstract. The Buquoy’s problem represents an interesting example of a one-

dimensional motion in which a uniform thin fibre is pulled upwards from a horizontal 

plane by a constant vertical force exerted against the homogeneous gravitational field. 

The problem includes several interesting concepts that are developed within the 

introductory university physics course, like motion with a variable mass, the use of the 

effective potential and a solution of a non-linear ODE of the second order, which 

provides an opportunity for some numerical modelling of the motion. It is a specific 

example of damped oscillations and according to our experience it can be discussed e.g. 

within a course in classical mechanics. Our contribution concentrates on the 

correspondence between a theoretical model and the experimental realization of this 

problem, which can be demonstrated in a standard classroom. In our set, the upward 

force is represented by buoyancy acting on a helium filled balloon. The experiment 

helps to develop some other competences of the students and naturally leads to a little 

bit more general mathematical model with an equation of motion that includes the 

constant mass of the helium ball and the dumping resistance force. 

1.  Introduction: the Buquoy’s problem history and formulation 

Mechanical problems dealing with variable masses represent an integral part of university courses in 

classical or theoretical mechanics. Typically, they are related to the rocket motion (see e.g. [1–3]), some 

textbooks provide several other examples (see e. g. problems 26.8 “condensation of a water droplet” or 

26.9 “motion of a truck with variable load” in [4]).  

In our contribution we would like to discuss another problem from the variable mass category with 

rather long history and several interesting details that might be of pedagogical interest for both our 

colleagues teaching undergraduate courses, and for their students. The topic is associated with a Czech 

aristocrat, mathematician and a talented inventor, a member of the French aristocratic family Buquoy 

de Longueval, Jiří František August Buquoy (Graf Georg Franz August von Buquoy in German). Born 

in 1781 in Brussels, he received his education in Vienna and Prague and became interested in natural 

sciences, mathematics, philosophy, economy, legal issues, literature, and poetry. With the wealth he 

inherited from his uncle, J. F. A. Buquoy was able to publish his own works, so since 1803 he was taking 

care of the large family possessions and his own investigations. Between 1810 and 1818, he was 

involved with the theory and practice of steam machines and in 1810 he introduced an original steam 

engine providing the output of 17 HP (i.e., about 12.7 kW).  Following the traditions in the area of his 

estates, he was also involved in glass production and in 1817 he invented an original process technology 
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(now forgotten) of a black opaque glass called hyalite. Moreover, in 1838 he founded the oldest nature 

reserve in continental Europe (Žofín Forest in South Bohemia).  

Between the years 1811 and 1815, J. F. A. Buquoy was involved mostly in issues of applied 

mechanics. He was the first one to formulate the problems and the equations of motion connected with 

the dynamics of variable mass systems. In 1812 and 1814 he issued two books on this subject and in 

August 1815 he presented his findings at the Paris Academy of Sciences. One of Buquoy’s explicit 

examples of a system with varying mass described in 1814 [5] is as follows: 

 

Consider an ideally flexible fibre lying reeled on a horizontal plane. Determine its motion when a 

constant vertical force (directed upward) is exerted on the end of the fibre. 

 

Although the solution of the problem suggested in [5] was not correct, the idea of such motion 

remains connected with Buquoy’s distinguished personality and since that time the problem has been 

dealt with many more times. In this text we build especially on the systematic analysis done by Šíma 

and Podolský [6]. Starting with the situation depicted in Figure 1, it is natural to introduce the following 

simplifying assumptions:  

• the vertical gravity field is homogeneous; 

• the fibre is thin and its linear density η is constant; 

• the fibre reels off without friction at the origin of the y-axis during the upward motion; 

• the fibre “smoothly disappears” at the origin of the y-axis during the motion downward, i.e., the 

part that has already landed on the plane does not move. 

 

The paper is organized in the following way: in section 2 we resume the equation of motion for the 

Buquoy’s problem, the main characteristic of the solution and the concept of the effective potential 

which can be employed for the description of motion. In section 3 we describe the experimental 

realization of the motion and the values of basic materials and setup constant parameters. In section 4 

we discuss a fit of video analysis data to a mathematical model which leads to a more general equation 

of motion. In the conclusion we try to formulate the main findings based on the experiment and 

experience with how the problem is integrated into our undergraduate curriculum.          

2.  Equations of motion, the effective potential and modelling of the motion 

The Buquoy’s problem provides several interesting features that give a good reason to use the problem 

within the undergraduate physics course. As shown e.g. in [6], the differential equations are different 

for upward and downward motion; for downward motion the appropriate momentum absorbed by the 

 

Figure 1. A schematic picture illustrating the 

formulation of the Buquoy’s problem with a 

vertically moving fibre (or a chain) under the 

constant force F in a homogeneous gravity 

field with the gravity acceleration g. The 

actual position of the upper end above the 

horizontal plane is denoted by y. 

  



 

 

 

 

 

 

“infinitely massive” horizontal plane. Denoting the linear density of the fibre as η, the moving vertical 

part of the fibre of the length y has the mass ηy. Within the aforementioned simplifying assumptions, 

the equation of motion  

d(𝜂𝑦𝑦̇)

dt
= 𝐹 − 𝜂𝑦𝑔,                                                                           (1) 

can be transformed into a compact form [6] 

𝑦̈ = 𝑔 (
𝑦c

𝑦
− 1) −

1

2
(1 + sgn 𝑦̇)

𝑦̇2

𝑦
.                                                   (2) 

This equation, which includes an interesting dependence on the velocity, has a stationary solution 𝑦̇ =
0, 𝑦̈ = 0 for a set of initial conditions 𝑦0 = 𝑦c, 𝑦̇0 = 0, with the value of yc determined by the force F 

and the gravity acceleration g  9.81 m s-2 (for the Czech Republic). This stationary solution 

𝑦c =
𝐹

𝜂𝑔
,                                                                                (3) 

corresponds to an equilibrium situation where the force F is equal to the gravity force acting on the 

vertical part of the fibre with the length yc.  

The solution of equation (2) is generally not possible to express in an analytical way, but it is possible 

to get a numerical solution with the help of suitable software. Generally, the numerical modelling of 

physical phenomena is an important part of undergraduate courses. As it has been stressed in various 

contexts, mathematical modelling of the physical world should be the central theme of physics 

instruction (see e. g. [7]). Visualization of equations (the ODE in this case) is very important to make 

more abstract concepts (like the effective potential here) visible.  In our courses (both on classical 

mechanics or within a propaedeutic course on the mathematical background of physics) we prefer the 

approach to let our students themselves create their own simulations in the software environment they 

prefer and provide them with the corresponding support. This approach has the advantage of getting the 

student to work in an exploratory and constructive way. In literature we can found various approaches 

and techniques to solve ODEs in physical problems, from Excel sheets (e. g. [8−9]) to Coach (e. g. [10]), 

MATLAB or GNU Octave (e. g. [11−12]), Python (e. g. [13]) or Easy Java Simulations (e. g. [14−16]). 

Of course, there are also complex computing systems like Wolfram Mathematica, which we also use in 

our courses. Not surprisingly, within physics courses we prefer any system that does not require an 

enormous investment of time to create a graphical simulation and enables to concentrate on the 

underlying physical model (an example of a model for the Buquoy problem based on the equation (2) is 

in Figure 2, it has been developed within our seminar on classical mechanics).  

Though we can visualize the ODE’s solutions numericaly, the overall character of the motion can be 

found with the help of the effective potential concept, which in our classical mechanics course is 

 

Figure 2. A simulation of a simplified model with Easy Java Simulations (http://fem.um.es/Ejs/) used 

for our seminars in classical mechanics (y0 = 0.12 m, 𝑦̇0 = 0). 
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introduced in connection with the Kepler’s problem and the planetary motion in the central force field 

(see, e.g. [4]). Both for upward and downward motion the effective potential has a form of a potential 

well (see Figure 2) with the analytical forms [6] 

1

2
𝑦̇2 + 𝑉ef

↑(𝑦) =
𝐹

2𝜂
,          𝑉ef

↑(𝑦) =  
𝑔

3
𝑦 − 

𝐶

𝑦2
 

for the upward phase, where the constant C is determined by the initial conditions; in fact, for the form 

of a well-like potential we must have C < 0. Having a constant mechanical energy for a run of the 

upward motion, we can see (Figure 2) that the motion comes to the turning point 𝑦̇ = 0 from which 

the downward motion follows. The effective potential of the downward phase reads as [6] 

1

2
𝑦̇2 + 𝑉ef

↓(𝑦) = 𝑉ef
↓(𝑦max),          𝑉ef

↓(𝑦) =  𝑔𝑦 −  
𝐹

𝜂
ln 𝑦, 

where ymax is a coordinate of the top turning point (in which the preceding upward motion ends). The 

effective potential has the same value 𝑉ef
↓(𝑦max) in the bottom turning point 𝑦̇ = 0 as well, in which the 

motion switches into the upward phase again. 

Thus, we get an oscillating motion around the equilibrium height yc, which is similar to the damped 

harmonic oscillator. The decreasing amplitude is caused by the loss of momentum absorbed by the 

ground plane during the downward motion. The concept of the effective potential enables us to find the 

maximal height ym of the first top turning point from the condition 

𝑉ef
↑(𝑦m) =   

𝑔

3
𝑦m −  

𝐶

𝑦m
2

=
𝐹

2𝜂
=  

𝑔

2
𝑦c, 

that leads to a quadratic equation with generally two solutions corresponding to the top and the bottom 

turning points. For the initial conditions y0 < yc relevant to the experiment set described in section 3, we 

obtain the maximum height  

𝑦m =
1

2
(

3

2
𝑦c − 𝑦0) +

1

2
√

3

2
(𝑦c + 𝑦0)2 − 4𝑦0

2.                                            (4) 

Let us point out that for the initial condition y0 > yc the maximum height is given by y0. 

The motion has one more interesting feature that can be easily derived from the equation of 

motion (2). For small oscillations around the equilibrium value yc we can introduce a new variable 

ξ = y – yc (ξ ≪ yc) and by neglecting the small term in the equation (2), we arrive to a linearized form 

𝜉̈ + 
𝑔

𝑦c
 𝜉 = 0. 

Therefore, the solution of the Buquoy’s problem has a harmonic-like character in the small oscillations 

limit with a period of small oscillations  

𝑇so = 2π√
𝑦c

𝑔
 =  

2π

𝑔
√

𝐹

𝜂
.                                                                   (5) 

 This limit might be important for a discussion in the class, as it is another supporting way to demonstrate 

the oscillatory character of the motion. 

One of the required features of the physics education is a strong link between theoretical models and 

a real practical measurement. The analysis of the Buquoy’s problem in [6] includes a suggestion of a 

possible experimental set: “The problem could be modelled experimentally as the vertical motion of a 

balloon with a heavy rope hanging down. The constant upward force would be the buoyant force exerted 

on the balloon in air. The mass of the balloon and the friction forces would have to be neglected.” As  



 

 

 

 

 

 

 

Figure 3. The experiment setup in an equilibrium position. 

 

shown in the following section, the assumption that we can neglect the mass of the balloon and the 

dumping forces is not so obvious and straightforward.       

3.  The experiment 

Our goal was to construct a functional Buquoy’s oscillator for the classroom demonstration and to 

compare its behaviour with the mathematical model described above. When designing an experimental 

model, first it was necessary to determine or estimate some important parameters of the experimental 

set and its components.  

A rubber balloon filled with helium was chosen as the source of a constant tensile force F. To 

simplify the supporting calculations, we assumed that that balloon had approximately a spherical shape. 

Because our intension was to show the experiment in a standard classroom with a maximum ceiling 

height of about 330 cm, for the approximation of the linear density we took the value yc = 2 m; than the 

maximum height can be estimated by putting y0 = 0 m in equation (4), after which we obtain ym  2.72 m. 

The average diameter of the balloon was determined from its circumference as d = 30(2) cm, i.e. its 

radius value was r = 15(1) cm. Under the simplifying assumption of the spherical shape, the volume of 

the balloon was V  14(3) × 10-3 m3. According to Archimedes’s principle, the buoyant force exerted on 

the helium filled balloon with the volume V in the air with the density ϱ = 1.2 kg m-3 is given by the 

famous relation FB = Vϱg; for the Buquoy’s problem this force simultaneously plays the role of the 

tensile force F acting on the balloon and the fibre. Substituting into the equation (3), the linear density 

can then be expressed as 

𝜂 =
𝐹𝐵

𝑔𝑦c
=  

𝑉𝜚

𝑦c
. 

For our classroom-size installation, we could estimate the linear density of the fibre to be η = 9.11  

g·m-1.  

To meet the assumption of a homogeneous fibre with a constant linear density, it should ideally be 

made from small interconnected parts which can smoothly depart from or fall on the ground plane.  

Finally, after some experimental attempts, a chain made of small balls, which is usually used in a 

bathroom sink, was chosen for this purpose. Particularly, we selected the chain with the smallest balls, 

the linear density of which was determined by digital scales to be η = 10.40(1) g m-1.  



 

 

 

 

 

 

 

Figure 4. Video data processing with Tracker (https://physlets.org/

tracker/), a free video analysis and modelling tool. 

 

Our Buquoy’s oscillator in the equilibrium position y = yc is shown in Figure 3. In all of our seven 

measurements, the balloon was released at a position y < yc with zero initial velocity and its motion was 

recorded by a video camera. Performing a video analysis of the motion with a free video analysis and 

modelling tool Tracker, we got a resulting graph in Figure 4, which shows the time dependence of the 

y coordinate marking the end of the fibre (chain). From the graph we can estimate the stationary position 

yc = 1.38 m.  Measuring the net tensile upward force by Vernier Dual-Range Force Sensor F = 0.136(6) 

N and using the linear density η = 10.40 g m-1, mentioned above, we can calculate the value yc 

substituting into the equation (3), which gives the result yc  1.33 m, which is by 4 % less than the value 

read from video analysis data. 

The graph in Figure 4 also enables us to guess the height reached by the chain upper end for chosen 

initial conditions as ym = 1.92 m. If we assume that y0 = 0 m, we can rewrite the equation (4) in the form 

 

𝑦m =
3

4
(1 + √

2

3
) 𝑦c ≈ 1.36 𝑦c. 

 

For the graph-deduced value yc = 1.38 m we get ym = 1.88 m, which is approximately 2 % less than the 

experimentally determined one. So, the experiment demonstrates that the relation between values of the 

yc and ym parameters read from video analysis quite corresponds to the relations of these values derived 

from the theoretical model. 

Figure 5 gives a comparison of two plots – one represents the theoretical model described by the 

equation (2) and the other represents the data extracted from the video record. At first glance one can 

see that there is a significant difference between them. Though the overall character of the motion 

corresponds to the dampened quasi-periodic oscillations predicted by the mathematical model described 

in section 2, the amplitudes and periods do not match, which means that our experiment needs a slightly 

different, less simplified mathematical model introduced in section 4.  

We can also estimate the period of small oscillations following the equation (5). Substituting the 

values F = 0.136 N and η = 10.40 g m-1 into equation (5), we get Tso = 2.31 s. The average value of the 

period in Figure 5 is Texp = 2.85(2) s. The difference of 19 % gives us further motivation to search for a 

more satisfying mathematical model describing our measurement. Certainly, part of the difference can  
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be explained by the fact that the movement of the balloon and the fibre was not absolutely horizontal 

and perpendicular to the surface of the table; in some moments the balloon also moved horizontally, so 

the fibre was pulled over the pad. 

4.  Fitting the measured data and a generalized equation of motion 

To find a better match between the theoretical model and experimentally determined values, we need 

to consider two other factors that were not included in a simplified model in section 2. Firstly, the air 

resistance and the fibre friction slow down the motion of the balloon.  Secondly, the mass of the balloon 

mb cannot be neglected in comparison to the mass of the vertical part of the fibre. Therefore, we must 

include these two extra factors in the theoretical model. Analogically to a damped harmonic oscillator 

problem (see, e.g. [1−2]), the resistance damping can be represented by a force depending on the fibre 

velocity linearly. Then the equation of motion (1) can be modified as  

d(𝜂𝑦𝑦̇ + 𝑚b𝑦̇)

dt
= 𝐹 − 𝜂𝑦𝑔 − 𝛾𝑦̇, 

where γ is the coefficient of the dumping force dependence on velocity. Straightforwardly, the 

generalized form of the equation (2) has the form 

𝑦̈ =
1

𝑦 + 𝛼
[𝑔(𝑦c − 𝑦) −

1

2
(1 + sgn 𝑦̇)𝑦̇2 − 𝛽𝑦̇],                                        (6) 

where 𝛼 =
𝑚b

𝜂
 is the factor related to the mass of the balloon pulling the fibre, 𝛽 =

𝛾

𝜂
  is the coefficient 

related to the dumping force. 

For further proceedings, Wolfram Mathematica computing system (version number 11.2.0.0) was 

employed to find the best least squares fit for the introduced parameters α and β.  Its procedure 

NonlinearModelFit enables to fit data to a model defined by a numerical operation, i.e. in our case  

 

Figure 5. Plots of the simplified theoretical model numerical solution (blue curve) and the 

video analysis data (black dots) for the same initial conditions; the difference signalizes 

that the simplified model is not suitable for the full description of our experiment. 

 



 

 

 

 

 

 

numerical solution of the differential equation (6). The results are illustrated in Figure 6. The fitted 

model (the red curve) corresponding to the equation (6) describes the video analysis data (the black dots) 

much better that the simplified model in Figure 5. The best fit provides the following values of the model 

parameters: yc =1.5781(15) m, α = 0.3027(47) m and β = 0.627(13) m s-1. Following the definition of 

the parameter α and substituting the balloon weight determined by digital scales mb = 3.2(1) g as well 

as the linear density η = 10.40(1) g m-1, we get  

𝛼 =
3.2

10.4
m ≈ 0.31 m, 

Which corresponds (within about 2.5 %) to the above value provided by the numerical fit.  

 

Certainly, the problem that the balloon and the moving part of the fibre are not perfectly vertical 

remains, which might be one of the sources of the remaining differences between a fitted model and the 

video analysis data. 

5.  Conclusions 

Buquoy’s problem leads to an interesting example of a 1-D motion with a rich historical context. It 

represents a specific example of damped oscillations and its solution includes several concepts 

developed within the introductory physics course: a motion with a variable mass, an effective potential, 

a solution of a non-linear ODE of the 2nd order requiring computer simulations. Thus, this problem might 

be considered a little bit more advanced example of an oscillatory motion as well as a specific kind of 

motion with a variable mass. Our experience proves, that the numerical modelling is accessible to the 

students and that with an appropriate preparation and support they are usually able to construct a 

functional numerical model with the help of a suitable software. 

The experiment supports other competences like a video analysis of the motion, and the fitting of the 

theoretical model parameters to the video analysis data. Moreover, the experiment leads to a more 

general theoretical model that is still accessible to undergraduate students. It demonstrates that the 

 
 

Figure 6. Plots of the video analysis data (black dots) and our more general model fit (the 

red curve) for yc = 1.56 m, y0 = 0.12 m, 𝑦̇0 = 0 m s−1. 
 



 

 

 

 

 

 

simplified assumptions – no matter how natural they might seem – are not always realistic; the mass of 

the balloon as well as the air resistance and friction dumping cannot be neglected.   

In our undergraduate physics curriculum, the students meet the Buquoy’s problem in three different 

contexts. Once in classical mechanics as an example of a variable mass problem, when we discuss the 

equation of motion and the introduction of effective potentials. Then we make use of this problem in a 

computer supported course concentrated on mathematical background of selected problems from 

various parts of physics, when the students are programming their own dynamical models and where we 

also train the fitting of the experimental data. The third instance is when the problem can be used for 

video analysis within a lab for perspective physics teachers. 

We realize that the experimental set still might be improved. Especially for larger oscillations within 

the first 5 s (see Figure 6), there still is a difference between the fitted model and video data. As already 

mentioned, one of the problems is to ensure the vertical motion of the balloon and the fibre without any 

horizontal shifts. The Buquoy’s problem is currently solved as a diploma thesis (by a student of a 

perspective physics teacher’s study programme) at our department. The goal is not only to improve the 

experimental set mentioned above but also to carry out demonstration of this movement. 

Nevertheless, we managed to carry out a classroom experimental demonstration of the Buquoy’s 

problem. Within the 2 % uncertainty of the measurement, the experimentally measured values of the 

maximum height and the parameter of constant mass of the balloon obtained through the numerical fit 

and calculated from the measured values correspond to each other. The generalized model given by the 

equation (6) is a more relevant description of an experimental realization of this interesting mechanical 

problem. 
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