

Incorporating Computational Exercises into Introductory
Physics Courses

G. Kortemeyer
Lyman Briggs College and Department of Physics and Astronomy, Michigan State
University, East Lansing, MI 48825-1107, USA

kortemey@msu.edu

Abstract. The paper describes the incorporation of computational exercises into introductory
physics courses: mechanics, electricity and magnetism, and modern physics. While these
courses traditionally emphasize symbolic and numerical calculations, as well as experimental
methods, over the last decade, increasingly computational methods are incorporated into the
curricula. The talk discusses opportunities for and examples of incorporating VPython projects,
as well as logistics, learner collaboration, learning outcomes, and student feedback.

1. Introduction

In the 21st century, Computational physics is emerging as a branch of physics parallel to the formation
of theoretical and experimental physics in the early part of the 20th century; consequently, it has found
entrance into the mandatory curricula of physics majors, frequently in the form of dedicated (but
single and oftentimes isolated) courses [1-3]. There are, however, increasing efforts to also incorporate
such dedicated courses into liberal arts curricula, which would reach non-physics majors [4].

Computation and computational modeling, however, are currently not an integrated part of the
majority of introductory physics courses. This is regrettable, since for many non-physics majors, these
courses may be their one and only exposure to physics – these students will have an incomplete
picture of physics, which may easily seem outdated and irrelevant in an information society. Various
projects are underway to embed computation into introductory courses [5-10], where a commonly
used language is the easy-to-learn and intuitive VPython [11] language. These curricular efforts
usually consist of small-scale, low-stakes programming exercises, which are aligned with the physics
concepts taught [12].

2. VPython

VPython is a visual extension of the Python language [11]. Most notably, any time “visual objects” are
created, they immediately appear in the graphics display. The environment is three-dimensional and
can be turned and zoomed as part of the built-in functionality. VPython also implements some basic

lighting and shading to add depth to the scene. Figure 1 shows an example of a VPython script; the
script launches a ball and lets it bounce off the floor a few times before the program ends.

Figure 1. Example of a simple VPython program. The left panel shows the code, the right panel the
graphical program output

The first lines initialize a variable dt, which will serve as the time-step length, and the objects

floor and ball. The parameters determine the initial position and size of these objects. The object
ball is assigned an additional property velocity, which is set to be a vector in the positive x-
direction. A vector g is initialized to represent gravitational acceleration in negative y-direction
(VPython programs are oftentimes not “to scale,” thus the negative one as gravitational acceleration).

The following loop implements the time steps (in Python, program blocks are indicated by
indentation instead of curly brackets like in many other languages – Python is whitespace sensitive).
After a synchronization statement (rate), in every time step, the ball’s velocity and position are
updated according to straightforward kinematics. If the ball’s y-position is smaller than zero (it hits the
floor), the y-component of the ball’s velocity is turned around to make the ball bounce.

Students could derive many physics insights from the program. For example, the gravitational
acceleration never changes, regardless of whether the ball is on the way up or on the way down (or at
the highest point of the trajectory). They could also derive the idea of a normal force from the floor
from the fact that only the y-component of the velocity changes. It may be surprising to them how
some calculations that would be prohibitively complicated to carry out analytically can be simulated
using nothing but first principles in a few lines of code.

VPython traditionally had to be installed locally as a standalone Integrated Development

Environment (IDE); while students find software installation surprisingly challenging, in many
respects, this is still the most predictable method. However, VPython can also be run without the need
to install any software within browsers using GlowScript [13], and it can be run within Jupyter
Notebooks [14], which allow for making worksheets for the learners. Unfortunately, different versions
of Python are not necessarily backward compatible, including fundamental functionality such as
integer algebra; this can pose challenges in grading assignments.

We are teaching our courses in Studio Physics format, where the programming exercises comprise
one of many activities, which also include more traditional problem-solving or laboratories activities.
Oftentimes we provide some starter or template code, which the students can subsequently modify and
expand. We collect the programs in a drop box in our course management system LON-CAPA [15],
which also allows for specifying collaborators at the time of submission.

3. Examples of Exercises

VPython can be used across the whole introductory course sequence, which in the United States
usually encompasses Mechanics in the first semester, Electricity and Magnetism in the second
semester, and Modern Physics in the third. Figure 2 shows examples of exercises we used in those
courses.

Figure 2. Examples of other exercises.

The top left panel of Figure 2 shows the simulation of a spacecraft moving on a closed trajectory
between the Earth and the Moon. The simulation is based solely on gravitational forces and is
appropriate for the first semester course. The top right panel shows a double slit experiment for a third
semester course; this simulation also incorporates some more advanced numerical methods such as

Monte Carlo. The bottom panel shows a second-semester “pinball game,” where charges need to be
shot through a random charge distribution to reach a target screen.

4. Collaborations

A concern with programming exercises, just like with any other assignments, is “the problem that
won’t go away” [16], namely unauthorized collaboration and plagiarism. This problem is arguably
aggravated by the ease of copying digital information, and lines are blurred by practices such as the
widely accepted and oftentimes desirable “borrowing” of code segments from sites like Stack
Overflow [17]. Understanding the nature of this problem requires careful analysis of the spectrum
from desired and authorized peer teaching and collaboration on the one end to blatant plagiarism on
the other end [18]; this has been extensively investigated for physics homework assignments [19-22].
However, particularly for coding assignments, there might be a “fine line” between expected code
similarities and the onset of plagiarism [23,24]. Why and when students overstep this boundary has
been researched for decades [25–27]. For one of our programming exercises, we analysed the
collaboration structure in detail [28].

Figure 3. Code similarity heat map [28]. Dark red indicates high similarity, blue low similarity. The
blocks are the result of a clustering algorithm, as shown in the dendrograms on top and on the left.

V9
0

V7
3

V7
1

V5
5

V1
08 V2
5

V9
3

V9
8

V4
2

V5
3

V5
2

V5
9

V9
5

V1
07 V7
2

V1
05 V4
4

V3
1

V6
5 V6 V4
3

V5
7

V8
5

V7
9

V9
7

V4
1

V8
3

V2
3

V5
6

V2
1

V2
2

V3
6 V4 V3
2

V7
0

V7
4

V3
0

V7
6

V1
6

V1
8

V4
0

V8
9

V1
00

V1
04 V2
8

V3
7

V3
4

V4
8

V6
4

V8
8

V9
2

V3
3

V5
4

V8
0

V1
9

V5
1

V6
9

V1
03 V4
6

V5
0

V9
1

V9
6

V1
01

V1
10 V2
4

V7
8

V1
09 V6
2

V6
3 V2 V1
3

V1
02 V4
9

V9
4

V3
5

V8
6

V6
1

V4
7

V9
9

V2
0

V1
5

V1
0

V1
4 V1 V7 V3 V2
6

V6
7

V7
7 V8 V8
1 V9 V5 V3
8

V1
2

V4
5

V1
06 V8
2

V8
4

V6
6

V2
7

V7
5

V1
1

V5
8

V3
9

V6
0

V2
9

V6
8

V1
7

V8
7

8717
6829
6039
5811
7527
6684
82106
4512
385
981
877
6726
37
114
1015
2099
4761
8635
9449
102132
6362
1097824
1101019691
5046
1036951
1980
5433
9288
6448
3437
28104
1008940
1816
7630
7470
324
3622
2156
2383
4197
7985
5743
665
3144
10572107
9559
5253
4298
9325
1085571
7390

0.2 0.6 1
Value

0
50

15
0

C
ou
nt

Figure 3 shows a heat map of similarity between student code submissions [28], based on the
number of edits to turn one submission into another. Each row and each column represent one code
submission. The dark red blocks outside the main diagonal indicate extreme similarity, which
indicates blatant plagiarism. There are clearly clusters of more moderate collaboration, which can be
visualized using network analysis; Figure 4 shows the result, where each vertex represents one
program submission and the edges represent the similarity (thicker edges indicate higher similarity).
The colors distinguish identified similarity clusters.

Figure 4. Force-directed network graph using the Fruchterman-Reingold algorithm [29] (graph

reproduced from Ref. [28]).

Based in these structures, inheritance relationships can be identified using Minimum Spanning Tree
algorithms [30,31]. Figure 5 shows the outcome of this analysis, where the left panel is the full
inheritance tree and the right panel is a pruned version that eliminates unstable branches.

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11

V12

V13

V14

V15
V16

V17

V18

V19

V20

V21

V22

V23

V24

V25

V26

V27

V28

V29

V30

V31

V32

V33

V34

V35

V36

V37

V38

V39

V40

V41

V42

V43V44

V45

V46

V47

V48

V49

V50

V51

V52

V53

V54

V55

V56

V57

V58

V59

V60

V61

V62

V63

V64

V65

V66

V67

V68

V69

V70

V71

V72

V73

V74

V75

V76

V77

V78

V79

V80

V81

V82

V83

V84

V85

V86

V87

V88

V89

V90

V91

V92

V93

V94
V95

V96

V97

V98

V99

V100

V101 V102

V103

V104

V105
V106

V107
V108

V109

V110

Figure 5. Minimum Spanning Tree [30,31] of the code similarity. The vertices represent student
code submissions, where the numbers correspond to the vertices in Figure 4. The left panel shows the

full tree, and the right panel a pruned version that eliminates unstable branches (graphs reproduced
from Ref. [28])

Students were also asked in a survey how large their collaboration groups were, and most students

stated that they worked with two or three peers [28]. Based on Figure 4, actual collaboration groups
are typically larger, having six, eight, or even ten members. As it turns out, this may be due to
“messenger” students, who provide links between groups, see Figure 5 – single students may carry
approaches or code segments from one group to another. Students reflect on their collaborations in
free-form survey answers:

• The programming projects are very difficult if I’m alone.
• I usually only collaborate with others if I have a question about a portion of the code.
• It’s mostly one person who knows how to do it showing everyone else how to do it.
• I’m usually teaching them how to program and fixing all of their errors.

As a result of our study, in our current semester, we decided to turn the programing exercises into
group projects. Preliminary experience shows that formalizing the group collaborative process was a
step in the right direction, as student satisfaction appears to have increased.

5. Learning Outcomes

No formal assessment of coding proficiency was carried out in our classes, however, students self-
reported on perceived learning outcomes on surveys [28]. A large number of students appreciate the
opportunity to learn about simulations and coding. Typical examples are:

• I think programming is a super relevant, useful and exciting skill.
• It is a useful skill that will be helpful in many careers.
• [The exercises] teach a valuable skill set that would not be attained unless taking a computer

programming class.

-5 0 5 10 15 20 25

-5
0

5
10

PC$x[, 1]

P
C

$x
[,

2]

1

2

3

4

5

6

7

8

9

1011

12
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

2930

31

32

33
34

35

3637

38

39
40

41
42

43

44

45

46 47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82
83

84

85

86

87

88
89

90

9192

93

94

95

96
97

98

99

100101
102

103104

105

106

107
108

109

110

-1 0 1 2 3

-0
.5

0.
0

0.
5

1.
0

PC$x[, 1]

P
C

$x
[,

2]
1

2

3

4

5
6

7
8

9

10

11
12

13

14

15

16

17

18
19

20

21

22
23 24

25

26

27
28

29

30

31

32

33 34

35

36

37

38

39 40
41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
62

63

6465

66

67

68

69

70

71

72
73

74

75

76

77

78

2

3

4

8

10
11

12
13

14

17

18
22

24

25

26

27

28

29
30

31

32

33
34 36

37

38

39
40

42

43

44

45

46 47

48

49

50

51

52 53
55

57

58

59

60

61

63

64

65

66

67

68

69

70

74

75

76

77

78

79

82
87

88

9192

93

94

96

97

98

99

101
102

103

106

107

109

110

However, in its current implementation, students do not believe they learn physics from the
exercises:

• They do not help me with my understanding of physics.
• I don’t understand a thing from [the exercises], the visual aid is nice, but it does not benefit

my learning at all.
• Maybe try and tie them in more with the lessons.

6. Conclusion

Integrating computational exercises into introductory physics courses is possible, and VPython
provides a tool that puts visualization of complex three-dimensional scenarios within reach of non-
physics majors. However, many students are overwhelmed by these projects when facing them alone,
so they seek out collaborators. Turning the programming exercises into group projects appears to be a
step in the right direction for this student population.

While students appreciate the knowledge gained about programming, as well as the visual aspects
of the simulations, a more explicit effort needs to be made to analyse the physics within the
simulations and help students with the transfer. In particular, more time needs to be spent in discussing
how code is frequently based on simple first principles (kinematics and pairwise forces), yet allows to
simulate complex scenarios (multi-body systems).

References

[1] A Spencer R L 2005 American Journal of Physics 73 151
[2] Martin R F 2016 Journal of Physics: Conference Series 759 012005
[3] Burke C J and Atherton T J 2017 American Journal of Physics 85 301
[4] Dominguez R and Huff B 2015 Journal of Physics: Conference Series 640 012061
[5] Cook D M 2008 American Journal of Physics 76 321
[6] Sands D 2010 New Directions in Teaching Physical Science 6 47–50
[7] Serbanescu R M, Kushner P J and Stanley S 2011 American Journal of Physics 79 919
[8] Caballero M D, Kohlmyer M A and Schatz M F 2012 AIP Conference Proceedings 8 020106
[9] Aiken J M, Caballero M D, Douglas S S, Burk J B, Scanlon E M, Thoms B D and Schatz M F

2013 AIP Conference Proceedings 1513 46
[10] Chabay R W and Sherwood B 2015 Matter and Interactions (New York: Wiley)
[11] Scherer D, Dubois P and Sherwood B 2000 Computational Science Engineering 2 56
[12] Caballero M D, Kohlmyer M A and Schatz M F 2012 Phys. Rev. ST Phys. Educ. Res. 8 020106
[13] http://www.glowscript.org/ (accessed Nov. 2018)
[14] http://jupyter.org/ (accessed Nov. 2018)
[15] http://lon-capa.org/ (accessed Nov. 2018)
[16] Paldy L G 1996 J. Coll. Sci. Teach. 26 4
[17] https://stackoverflow.com/ (accessed Nov. 2018)
[18] Park C 2003 Assess. Eval. Higher Educ. 28 471
[19] Palazzo D J, Lee Y-J, Warnakulasooriya R and Pritchard D E 2010 Phys. Rev. ST Phys. Educ.

Res. 6 010104
[20] Kortemeyer G 2014 Phys. Rev. ST Phys. Educ. Res. 10 010118
[21] Kontur F, de La Harpe K and Terry N 2015 Phys. Rev. ST Phys. Educ. Res. 11 010105
[22] Busch H 2017 The Physics Teacher 55 422
[23] Joy M and Luck M 1999 IEEE Trans. Educ. 42 129
[24] Mann S and Frew Z 2006 Proc. 8th Australasian Conf. on Computing Education 52 143
[25] Drake C A 1941 J. Higher Educ. 12 418

[26] Nuss E M 1984 Coll. Univ. Teach. 32 140
[27] Simkin M G and McLeod A 2010 J. Bus. Ethics 94 441
[28] Kortemeyer G and Kortemeyer A F 2018 European Journal of Physics 39 055705
[29] Fruchterman T M and Reingold E M 1991 Software: Practice and Experience 21 1129
[30] Kurskal J B 1956 Proc. American Mathematical Society 7 48
[31] Paradis E, Claude J, Strimmer K 2004 Bioinformatics 20 289

