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Abstract. The paper describes the incorporation of computational exercises into introductory 
physics courses: mechanics, electricity and magnetism, and modern physics. While these 
courses traditionally emphasize symbolic and numerical calculations, as well as experimental 
methods, over the last decade, increasingly computational methods are incorporated into the 
curricula. The talk discusses opportunities for and examples of incorporating VPython projects, 
as well as logistics, learner collaboration, learning outcomes, and student feedback. 

 

1.  Introduction 
 
In the 21st century, Computational physics is emerging as a branch of physics parallel to the formation 
of theoretical and experimental physics in the early part of the 20th century; consequently, it has found 
entrance into the mandatory curricula of physics majors, frequently in the form of dedicated (but 
single and oftentimes isolated) courses [1-3]. There are, however, increasing efforts to also incorporate 
such dedicated courses into liberal arts curricula, which would reach non-physics majors [4]. 
 

Computation and computational modeling, however, are currently not an integrated part of the 
majority of introductory physics courses. This is regrettable, since for many non-physics majors, these 
courses may be their one and only exposure to physics – these students will have an incomplete 
picture of physics, which may easily seem outdated and irrelevant in an information society. Various 
projects are underway to embed computation into introductory courses [5-10], where a commonly 
used language is the easy-to-learn and intuitive VPython [11] language. These curricular efforts 
usually consist of small-scale, low-stakes programming exercises, which are aligned with the physics 
concepts taught [12]. 

2.  VPython 
 
VPython is a visual extension of the Python language [11]. Most notably, any time “visual objects” are 
created, they immediately appear in the graphics display. The environment is three-dimensional and 
can be turned and zoomed as part of the built-in functionality. VPython also implements some basic 



 
 
 
 
 
 

lighting and shading to add depth to the scene. Figure 1 shows an example of a VPython script; the 
script launches a ball and lets it bounce off the floor a few times before the program ends. 

 
 

Figure 1. Example of a simple VPython program. The left panel shows the code, the right panel the 
graphical program output 

 
The first lines initialize a variable dt, which will serve as the time-step length, and the objects 

floor and ball. The parameters determine the initial position and size of these objects. The object 
ball is assigned an additional property velocity, which is set to be a vector in the positive x-
direction. A vector g is initialized to represent gravitational acceleration in negative y-direction 
(VPython programs are oftentimes not “to scale,” thus the negative one as gravitational acceleration). 
 

The following loop implements the time steps (in Python, program blocks are indicated by 
indentation instead of curly brackets like in many other languages – Python is whitespace sensitive). 
After a synchronization statement (rate), in every time step, the ball’s velocity and position are 
updated according to straightforward kinematics. If the ball’s y-position is smaller than zero (it hits the 
floor), the y-component of the ball’s velocity is turned around to make the ball bounce. 
 

Students could derive many physics insights from the program. For example, the gravitational 
acceleration never changes, regardless of whether the ball is on the way up or on the way down (or at 
the highest point of the trajectory). They could also derive the idea of a normal force from the floor 
from the fact that only the y-component of the velocity changes. It may be surprising to them how 
some calculations that would be prohibitively complicated to carry out analytically can be simulated 
using nothing but first principles in a few lines of code. 

 
VPython traditionally had to be installed locally as a standalone Integrated Development 

Environment (IDE); while students find software installation surprisingly challenging, in many 
respects, this is still the most predictable method. However, VPython can also be run without the need 
to install any software within browsers using GlowScript [13], and it can be run within Jupyter 
Notebooks [14], which allow for making worksheets for the learners. Unfortunately, different versions 
of Python are not necessarily backward compatible, including fundamental functionality such as 
integer algebra; this can pose challenges in grading assignments. 

 



 
 
 
 
 
 

We are teaching our courses in Studio Physics format, where the programming exercises comprise 
one of many activities, which also include more traditional problem-solving or laboratories activities. 
Oftentimes we provide some starter or template code, which the students can subsequently modify and 
expand. We collect the programs in a drop box in our course management system LON-CAPA [15], 
which also allows for specifying collaborators at the time of submission. 

3.  Examples of Exercises 
 

VPython can be used across the whole introductory course sequence, which in the United States 
usually encompasses Mechanics in the first semester, Electricity and Magnetism in the second 
semester, and Modern Physics in the third. Figure 2 shows examples of exercises we used in those 
courses. 
 

 

 
 

Figure 2. Examples of other exercises. 
 

The top left panel of Figure 2 shows the simulation of a spacecraft moving on a closed trajectory 
between the Earth and the Moon. The simulation is based solely on gravitational forces and is 
appropriate for the first semester course. The top right panel shows a double slit experiment for a third 
semester course; this simulation also incorporates some more advanced numerical methods such as 



 
 
 
 
 
 

Monte Carlo. The bottom panel shows a second-semester “pinball game,” where charges need to be 
shot through a random charge distribution to reach a target screen. 

4.  Collaborations 
 
A concern with programming exercises, just like with any other assignments, is “the problem that 
won’t go away” [16], namely unauthorized collaboration and plagiarism. This problem is arguably 
aggravated by the ease of copying digital information, and lines are blurred by practices such as the 
widely accepted and oftentimes desirable “borrowing” of code segments from sites like Stack 
Overflow [17]. Understanding the nature of this problem requires careful analysis of the spectrum 
from desired and authorized peer teaching and collaboration on the one end to blatant plagiarism on 
the other end [18]; this has been extensively investigated for physics homework assignments [19-22]. 
However, particularly for coding assignments, there might be a “fine line” between expected code 
similarities and the onset of plagiarism [23,24]. Why and when students overstep this boundary has 
been researched for decades [25–27]. For one of our programming exercises, we analysed the 
collaboration structure in detail [28]. 
 

 
 

Figure 3. Code similarity heat map [28]. Dark red indicates high similarity, blue low similarity. The 
blocks are the result of a clustering algorithm, as shown in the dendrograms on top and on the left. 
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Figure 3 shows a heat map of similarity between student code submissions [28], based on the 
number of edits to turn one submission into another. Each row and each column represent one code 
submission. The dark red blocks outside the main diagonal indicate extreme similarity, which 
indicates blatant plagiarism. There are clearly clusters of more moderate collaboration, which can be 
visualized using network analysis; Figure 4 shows the result, where each vertex represents one 
program submission and the edges represent the similarity (thicker edges indicate higher similarity). 
The colors distinguish identified similarity clusters. 

 

 
Figure 4. Force-directed network graph using the Fruchterman-Reingold algorithm [29] (graph 

reproduced from Ref. [28]). 
 

Based in these structures, inheritance relationships can be identified using Minimum Spanning Tree 
algorithms [30,31]. Figure 5 shows the outcome of this analysis, where the left panel is the full 
inheritance tree and the right panel is a pruned version that eliminates unstable branches. 
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Figure 5. Minimum Spanning Tree [30,31] of the code similarity. The vertices represent student 
code submissions, where the numbers correspond to the vertices in Figure 4. The left panel shows the 

full tree, and the right panel a pruned version that eliminates unstable branches (graphs reproduced 
from Ref. [28]) 

 
Students were also asked in a survey how large their collaboration groups were, and most students 

stated that they worked with two or three peers [28]. Based on Figure 4, actual collaboration groups 
are typically larger, having six, eight, or even ten members. As it turns out, this may be due to 
“messenger” students, who provide links between groups, see Figure 5 – single students may carry 
approaches or code segments from one group to another. Students reflect on their collaborations in 
free-form survey answers: 

 
• The programming projects are very difficult if I’m alone.  
• I usually only collaborate with others if I have a question about a portion of the code. 
• It’s mostly one person who knows how to do it showing everyone else how to do it.  
• I’m usually teaching them how to program and fixing all of their errors.  

As a result of our study, in our current semester, we decided to turn the programing exercises into 
group projects. Preliminary experience shows that formalizing the group collaborative process was a 
step in the right direction, as student satisfaction appears to have increased. 

5.   Learning Outcomes 
 
No formal assessment of coding proficiency was carried out in our classes, however, students self-
reported on perceived learning outcomes on surveys [28]. A large number of students appreciate the 
opportunity to learn about simulations and coding. Typical examples are: 
 

• I think programming is a super relevant, useful and exciting skill.  
• It is a useful skill that will be helpful in many careers.  
• [The exercises] teach a valuable skill set that would not be attained unless taking a computer 

programming class.  
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However, in its current implementation, students do not believe they learn physics from the 
exercises: 
 

• They do not help me with my understanding of physics.  
• I don’t understand a thing from [the exercises], the visual aid is nice, but it does not benefit 

my learning at all.  
• Maybe try and tie them in more with the lessons.  

6.  Conclusion 
 
Integrating computational exercises into introductory physics courses is possible, and VPython 
provides a tool that puts visualization of complex three-dimensional scenarios within reach of non-
physics majors. However, many students are overwhelmed by these projects when facing them alone, 
so they seek out collaborators. Turning the programming exercises into group projects appears to be a 
step in the right direction for this student population. 
 

While students appreciate the knowledge gained about programming, as well as the visual aspects 
of the simulations, a more explicit effort needs to be made to analyse the physics within the 
simulations and help students with the transfer. In particular, more time needs to be spent in discussing 
how code is frequently based on simple first principles (kinematics and pairwise forces), yet allows to 
simulate complex scenarios (multi-body systems). 
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