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Abstract.
Dissipative features of dark matter affect its clustering properties and could lead to

observable consequences for the evolution of large–scale structure. We analyse the evolution
of cold dark matter density perturbations allowing for the possibility of bulk viscous pressure in
a causal dissipative theory. Our analysis employs a Newtonian approximation for cosmological
dynamics and the transport properties of bulk viscosity are described by the Israel–Stewart
theory. We obtain a third order evolution equation for density perturbations. For some
parameter values the density contrast can be suppressed compared to results obtained in the
ΛCDM scenario. For other values causal bulk viscous dark matter can exhibit an enhancement
of clustering.

1. Introduction
The universe evolved from a hot, dense, homogeneous initial state to its present cool, diffuse
and inhomogeneous state during a period of 13.8 billion years [1]. The origin of large scale
structure is described by the gravitational instability paradigm [2]. In its simplest form the
matter content of the universe is initially in hydrodynamic equilibrium. Density perturbations
with wavelengths larger than the Jeans scale are unstable and this mechanism is thought to
be responsible for the development of large scale structure and eventually galaxies. A universe
consisting only of baryonic matter requires more than 14 billion years to produce the observed
distribution of galaxies via the gravitational instability mechanism. Large amounts of cold dark
matter (CDM) are required to salvage the structure formation scenario. Further arguments for
the existence of dark matter follow from the rotation curves of galaxies [3], lensing by clusters
[4] and the power spectrum [1] of the cosmic microwave background (CMB). The ΛCDM model
includes a cosmological constant to account for the late time acceleration of the expansion [5].

Despite its great successes the ΛCDM model encounters some problems when addressing the
question of structure formation. Persistent discrepancies exist between dark matter N–body
simulations and observations. These include the “missing satellites” problem where simulations
overproduce the number of satellite galaxies [6] and the “core–cusp” problem where dwarf
galaxies have density profiles much flatter at the center than are predicted by simulation [7].

Proposed solutions to these problems involve including baryonic feedback [8, 9], the warm
dark matter (WDM) hypothesis [10] or extensions to general relativity i.e. modified gravity
[11, 12, 13]. Including dissipative features – such as viscosity – in CDM is another approach



[14]. This can suppress small scale structures in comparison to the ΛCDM scenario and thus
help to alleviate the tension between theory and observation.

Several authors have included bulk viscosity in cosmological models [14, 15]. Given that dark
matter empirically doesn’t interact with normal matter (baryons and radiation), bulk viscosity is
used as a phenomenological model of possible self–interaction and consequent dissipation within
the dark fluid itself [15]. Most of the literature in this context invokes the Eckart theory [16],
where systems relax to equilibrium instantaneously. Here bulk viscous pressure perturbations
travel infinitely fast and violate causality. Even though the Israel–Stewart theory [17] represents
a physically more robust way of of modelling dissipation (it is generically stable and causal), it
is however more difficult to treat analytically.

In this paper we allow dark matter to have a bulk viscous pressure with a finite relaxation
time, τ , by using the causal Israel–Stewart transport equation. We determine the growth of
dark matter density perturbations in this model and compare our results to the ΛCDM and
Eckart models.

2. Viscous cosmology
To tackle the problem of structure formation with viscous dark matter we adopt a minimal model
where the universe is comprised solely of spatially homogeneous and isotropic dark matter. The
matter obeys Hubble’s law i.e. u = H(t)r and cosmic dynamics is governed by the Navier–Stokes
equations viz.
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u = −∇p−∇Π + ρ∇Φ (2)

∇2Φ = 4πGρ. (3)

Dark matter is thus modelled as a self–gravitating fluid with mass density, ρ, velocity u, pressure,
p, and bulk viscous pressure, Π. The gravitational potential, Φ, is determined by Poisson’s
equation. This Newtonian treatment is a good approximation for non–relativistic matter on
sub–horizon scales and at late times.

In the Eckart theory the bulk viscous pressure obeys the constitutive relation

Π = −ζ∇ · u (4)

where ζ is the coefficient of bulk viscosity [18] viz.

ζ = ζ0

(
ρ

ρ0

)s
. (5)

and quantities evaluated at the present time are indicated with the subscript 0. The exponent s
encapsulates our ignorance about how the dissipation due to bulk viscosity arises from possible
microscopic considerations. One only knows that, in the context of irreversible thermodynamics,
the transport coefficients for a dissipative fluid depend on a certain power of the temperature,
which in turn (due to Gibbs’ fundamental relation) depends on a power of the energy density ρ.
Hence, the most generic choice for the bulk viscosity coefficient is ζ ∝ ρs. In the absence of a
microscopic connection, the exponent s is effectively a free parameter to be fixed by observations.

In the Israel–Stewart theory the bulk viscosity obeys the more complicated transport equation

τ Π̇ + Π = −ζ∇ · u− ε
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where τ is the relaxation time, T the temperature and the overdot represents time derivatives in
comoving coordinates. In the Newtonian limit this operator reduces to the convective derivative
i.e. D

Dt = ∂
∂t + u · ∇.

The dimensionless bookkeeping parameter, ε, only assumes the values 0 or 1. It was artificially
introduced into Eqn. (6) as a way to later distinguish between terms arising from the full Israel–
Stewart theory (where ε = 1) and the truncated Israel–Stewart (TIS) model (where ε = 0). The
TIS model is a commonly used approximation of Eqn. (6) because, while keeping the causal
character of the full theory, it is analytically simpler. However, it has been shown [19, 20] that
the truncated version agrees with the full theory only in very specific cases. Physically speaking,
the condition for the validity of the truncation translates to a condition on the relative magnitude
between the bulk pressure and the energy density of the fluid. In a cosmological setting, and
specifically in a background (non–perturbative) analysis, the problem is that this condition
might hold in some cosmic epoch but not necessarily at all times. In general, however, it is
expected that the truncated and full theories agree in near–equilibrium situations.

A crucial difference between these two theories of dissipative phenomena is that in Israel–
Stewart theory, systems have a finite relaxation time, τ . By contrast, in Eckart theory, systems
relax instantaneously, i.e. τ = 0. This implies that bulk viscous pressure perturbations travel
infinitely fast as c2b = ζ

(ρ+p)τ . where cb is the sound speed of bulk viscous pressure perturbations.

Causality is restored in Israel–Stewart theory.
Perturbing and linearising the system (1) - (3) leads to an evolution equation for the density

contrast, δ ≡ δρ/ρ, which is valid for any pressure source viz.

δ̈ + 2Hδ̇ +

(
c2sk

2

a2
− 4πGρ

)
δ = − k2

a2ρ
δΠ. (7)

We recover the standard cosmology for inviscid pressure when δΠ = 0. For non–expanding fluids
(a = 1, H = 0) we recover the original Jeans instability criterion viz. k2 < 4πGρ

c2s
, where c2s = dp

dρ

represents the adiabatic sound speed. Including the causal, Israel–Stewart transport equation
we obtain a third order evolution equation:
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where primes denote derivatives with respect to the scale factor. In this equation q and j are
the deceleration and jerk parameters respectively viz. q = −äaȧ−2 and j = −...

aa2ȧ−3. When
τ → 0 (or equivalently c2b → ∞) Eq.(8) reduces to Eckart’s form [15]. The non-viscous ΛCDM
case is recovered when ζ0 → 0.

3. Analysis
There are three characteristic timescales viz. (i) the expansion time te ∼ H−1, (ii) the collapse
time tc = (4πGρ)−1/2 and (iii) the relaxation time τ = (ζ0 ρ

s−1)/(c2b ρ
s
0). Since we are looking at

the matter-dominated era, te = 2/(3H) and, using the Friedmann equation, any ratio between
te and tc is constant. Ratios involving τ however are time dependent. In Eq.(8) the relaxation
time always appears in the form:

H τ =
2

3

τ

te
(9)



Figure 1. Evolution of the density contrast, δ(a), for s = −1/2, varying c2b in TIS for k = 0.01h
Mpc−1.

The deviation between IS and Eckart theories can be characterised by τ/te. In general, when the
relaxation time is non–negligible the two theories will differ. The two theories converge when
τ/te → 0 and the condition for negligible departure from Eckart is given by

τ
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� 1 ⇒ ζ0

c2b

√
8πG
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a3(

1
2
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Once the time-independent ratio ζ0/c
2
b is fixed, this condition depends strongly on s which

appears in the exponent of the scale factor. If s < 1/2 then the condition τ/te � 1 always holds
for a � 1: IS and Eckart coincide at early times and the deviations can show up only at later
times. If s > 1/2 then τ/te � 1 holds at early times. Here significant deviation between IS
and Eckart already appears for a� 1. The critical value s = 1/2 has been reported in previous
studies of the background evolution of cosmological models eg. in [21, 22].

The density contrast evolution equation (8) can be numerically integrated and a typical
result is displayed in Figure 1. We characterise the magnitude of clustering by the amplitude
of δ at late times. The standard ΛCDM model displays the most clustering, whilst CDM with
Eckart viscosity has the most strongly suppressed clustering. CDM models with truncated
Israel-Stewart (TIS) viscosity lie between the two extremes. Our results indicate that Israel-
Stewart viscosity models could suppress clustering at late times and alleviate the structure
evolution problems. More detailed analysis can be found in [23]. For certain parameter ranges an
increase in clustering compared to the non–viscous CDM case was predicted. This is surprising
as a viscous fluid should be more resistant to clustering than an inviscid fluid. A possible
explanation for this could be that the relevant parameter ranges i.e. values of the exponent s
are unphysical. The adiabatic condition viz. DS

Dt = 0 needs to be modified to account for viscous
energy dissipation. This is a topic for future investigation.

4. Conclusion
We examined the effect of bulk viscosity on the growth of dark matter perturbations in the causal
Israel–Stewart dissipative theory. A third order evolution equation for the density contrast was



derived and analysed both analytically and numerically.
The numerical solutions were compared to those obtained for both the standard ΛCDM

scenario as well as the non–causal Eckart theory. The deviation in behaviour of the density
contrast from the ΛCDM and Eckart models depends sensitively on the exponent s appearing in
the bulk viscosity coefficient, ζ. If s < 1/2 the IS models diverge from ΛCDM only at late times,
whilst if s > 1/2 this divergence starts to occur at much earlier times. If dark matter admits
bulk viscosity with coefficient s < 1/2 in the IS theory, the growth of structure is suppressed
at late times. This may serve to alleviate the tension between the clustering of dark matter
predicted by ΛCDM and that inferred by astronomical observations.

If s > 1/2 the IS models can exhibit greater clustering than for ΛCDM. This result is
surprising as a viscous fluid should experience greater resistance to clumping than an inviscid
fluid. We suspect that the parameter range might be unphysical and that this issue may be
addressed by examining the energy equation for the system and establishing that the fluid’s
entropy is always increasing.

As expected the Eckart models approach ΛCDM in the limit of vanishing viscosity. The IS
models however can still mimic ΛCDM even with non–zero viscosity if one chooses appropriate
values for sound speed of bulk viscous pressure perturbations, cs. Our analysis is based on a
Newtonian approximation and solving the fully relativistic problem is the subject of future work.
Other studies that merit attention are determining observational constraints on the viscosity
parameters, as well as investigating the effects of viscosity on non–linear clustering.
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