**SAIP2017** 



Contribution ID: 309

Type: Oral Presentation

## Computational Modelling Study on Stability of Li-S/Se System

Thursday, 6 July 2017 12:30 (20 minutes)

Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society. Here we consider a study on rechargeable lithium–sulfur (Li–S) batteries which hold great potential for high-performance energy storage systems because they have a high theoretical specific energy, low cost, and are eco-friendly. This work employs computational modelling methods to explore stability, structural and electronic properties of discharge products formed in the Li-S/Se battery, especially Li<sub>2</sub>S/Se, which has potential to offer higher theoretical specific energy and remedies the challenges that Li-S battery encounters. First principle methods were used to calculate thermodynamic properties of Li<sub>2</sub>S and Li<sub>2</sub>S, which agreed with available experimental results. A cluster expansion technique generated new stable phases of Li<sub>2</sub>S/Se system and Monte Carlo simulations determined concentration and temperature ranges in which the systems mix. Interatomic Born Meyer potential models for Li<sub>2</sub>Se were derived and validated and used to explore high temperature structural and transport properties of Li<sub>2</sub>S/Se.

### Apply to be<br> considered for a student <br> &nbsp; award (Yes / No)?

Yes

### Level for award<br>&nbsp;(Hons, MSc, <br> &nbsp; PhD, N/A)?

PhD

#### Main supervisor (name and email)<br>and his / her institution

Ngoepe P.E phuti.ngoepe@ul.ac.za UL, MMC

# Would you like to <br> submit a short paper <br> for the Conference <br> Proceedings (Yes / No)?

Yes

Primary author: Mr MASEDI, Cliffton (UL/CSIR)

Co-authors: Dr SITHOLE, Happy (CSIR); Prof. NGOPE, Phuti (UL)

**Presenter:** Mr MASEDI, Cliffton (UL/CSIR)

Session Classification: Physics of Condensed Matter and Materials 1

Track Classification: Track A - Division for Physics of Condensed Matter and Materials