PRODUCTION OF THE MADALA BOSON IN ASSOCIATION WITH TOP QUARKS

Stefan von Buddenbrock

Wits HEP group SAIP 2017

The Madala boson?

- A heavy, hypothetical boson, H
- Mass around ~270 GeV (arXiv:1506.00612)
- Interacts with the Standard Model Higgs boson, *h*
 - Its existence can explain several experimental anomalies, such as
 - Higgs p_T spectrum
 - Multilepton excesses
 - *tth* excesses
 - Madala hypothesis
 - An effective approach; simplified idea with the intent on studying anomalous LHC data

Producing the Madala boson

- Initially assumed gluon fusion (ggF)
- This assumes a Yukawa coupling: $\sim y_t t \overline{t} H$
 - This coupling in non-negligible (proportional to top mass)
 - what other production modes are possible?
- Top associated production! (*ttH*)
 - Similar to the Higgs boson
- Dominant Feynman diagram contains same vertices as ggF
- We scale the Yukawa coupling by $\beta_g \approx$ 1.5, so cross section is enhanced

Cross sections

- For *tth* searches, we need to consider single top (*tH*) AND double top (*ttH*) production
- *ttH* cross sections have been calculated and published
 - What about *tH*?
 - We find that in the Madala hypothesis:

$$\sigma_{ttH} \cong \sigma_{tH}$$

For single top production:

$$\mathcal{A} = \frac{g}{2} \left[(c_F - c_V) \frac{m_t \sqrt{s}}{m_W v} A + \left(c_V \frac{2m_W s}{vt} + (2c_F - c_V) \frac{m_t^2}{m_W v} \right) B \right]$$

But in our case $c_V \ll c_F$,

$$\therefore \mathcal{A} \cong \frac{g}{2} \left[c_F \frac{m_t \sqrt{s}}{m_W v} A + \left(c_V \frac{2m_W s}{vt} + 2c_F \frac{m_t^2}{m_W v} \right) B \right]$$
(JHEP 1305 (2013) 022)

Decay modes of the Madala boson

- Main decay modes of *H*:
 - $H \rightarrow Sh, SS, hh$
- Depending on choice of masses, this could be on- or off-shell
- Potential for a Higgs boson in the final state
- So top associated Madala production implies top associated Madala production
- If $S \rightarrow$ leptons, we should look in multilepton searches

<u>The S boson:</u>

- Scalar singlet
- Mass between ~130 and ~180 GeV
- Approximation: make it Higgs-like, to simplify branching ratios
- Potential portal to dark matter

tth -> multileptons

• Experiments make measurements on

 $\mu_{tth} = \frac{\sigma_{obs}}{\sigma_{SM}}$

- $\mu_{tth} = 1$ is the Standard Model prediction
- Combining all experimental results, we get $\mu_{tth} = 1.92 \pm 0.38$

• Excess of cross section!

 Table taken from: S von Buddenbrock, 'Exploring LHC Run 1 and 2 data using the Madala hypothesis', arXiv:1706.02477 [hep-ph]

Reference	Channel	Measured μ_{tth}
CMS Run 1 [35]	Same-sign 2ℓ	$5.3^{+2.1}_{-1.8}$
	3ℓ	$3.1^{+2.4}_{-2.0}$
	4ℓ	$-4.7^{+5.0}_{-1.3}$
	Combination	$2.8^{+1.0}_{-0.9}$
ATLAS Run 1 [36]	$2\ell0 au_{ m had}$	$2.8^{+2.1}_{-1.9}$
	3ℓ	$2.8^{+2.2}_{-1.8}$
	$2\ell 1 au_{ m had}$	$-0.9^{+3.1}_{-2.0}$
	4ℓ	$1.8\substack{+6.9 \\ -2.0}$
	$1\ell 2 au_{ m had}$	$-9.6\substack{+9.6\\-9.7}$
	Combination	$2.1^{+1.4}_{-1.2}$
CMS Run 2 [37]	Same-sign 2ℓ	$1.7\substack{+0.6 \\ -0.5}$
	3ℓ	$1.0\substack{+0.8\\-0.7}$
	4ℓ	$0.9^{+2.3}_{-1.6}$
	Combination	$1.5\substack{+0.5 \\ -0.5}$
ATLAS Run 2 [38]	$2\ell0 au_{ m had}$	$4.0^{+2.1}_{-1.7}$
	3ℓ	$0.5\substack{+1.7 \\ -1.6}$
	$2\ell 1 au_{ m had}$	$6.2^{+3.6}_{-2.7}$
	4ℓ	< 2.2
	Combination	$2.5^{+1.3}_{-1.1}$
Error weighted mean		1.92 ± 0.38

tth -> multileptons in the LHC Run 2 data

1) ATLAS tth

2) CMS *tth*

3) CMS single top

CMS-PAS-HIG-17-004

Category	Observed μ fit $\pm 1\sigma$
Same-sign di-lepton	1.7(-0.5)(+0.6)
Three lepton	1.0(-0.7)(+0.8)
Four lepton	0.9(-1.6)(+2.3)
Combined (2016 data)	1.5(-0.5)(+0.5)
Combined (2015 data) [42]	0.6(-1.1)(+1.4)
Combined (2015+2016 data)	1.5(-0.5)(+0.5)

Modeling *ttH* production

- Three steps required:
- 1. MadGraph
 - Generate events with the process $pp \rightarrow ttH$ and $pp \rightarrow tH$
- 2. Pythia 8
 - Decays $H \rightarrow Sh$, and then decays h and S assuming S is Higgs-like
- 3. Delphes
 - Simulates the detector response
 - Applies experimental efficiencies
 - Outputs data file for analysis

ttH and tH kinematics

Comparing to data: CMS Run 2 single top

- CMS do a search for a Higgs boson with an additional top quark
- The analysis is an MVA, but they also give results for their pre-selection (below)
 - For the Madala hypothesis, both *ttH* and *tH* production contribute a signal

Comparing tH and ttH

- In this search the same sign dimuon channel has an enhanced rate
- Adding the Madala hypothesis (purple) and scaling $\beta_g^2 = 3.1 \pm 1.02$ gives the best fit to dimuon data
- This value is consistent with our previous studies (arXiv:1506.00612)
- Errors are large

E vents CMS Run 2 single top $\sqrt{s} = 13 \text{ TeV}$. L = 35.9 fb⁻¹ eµ category $m_{H} = 270 \text{ GeV}, m_{g} = 140 \text{ GeV}^{-1}$ 60 $\beta^2 = 2.87$ 50 DATA - SM - SM+BSM 40 30 20 10 3 3.5 4 4.5 Max jet hl ($p_{Ti} > 25$ GeV) 2.5 Events CMS Run 2 single top $\sqrt{s} = 13 \text{ TeV}, L = 35.9 \text{ fb}^{-1}$ 60 eµ category m_H = 270 GeV, m_c = 140 GeV ² = 2.87 - SM+BSN · DATA — SM -30 10 SAIP 2017 0.5 1.5 25 $\Delta \phi$ between leading same-sign lepton pair

$e\mu$ channel

5 July 2017

Tri-lepton channel

- Negative fluctuation
- Statistics are lower \rightarrow errors are larger

- Using the cross section scaling β_g^2 , we can determine whether the results are compatible with each other
- The di-lepton results are compatible with our previous result
- This may have to do with the way we model *S*, other ideas are being investigated (see Mukesh's talks)

Channel	Value of $meta_g^2$
Same sign $\mu\mu$	3.10 ± 1.02
Same sign e μ	2.87 ± 1.04
Tri-lepton	-0.93 ± 0.92
Combined	1.48 ± 0.57
Old fit result	2.25 ± 1.80

Conclusions

- The Madala hypothesis has been investigated in the context of top associated production
- When making fits to the CMS Run 2 single top search:
 - The di-lepton search channels are compatible with our previous results
 - Combined fit significance: $\sim 2.6\sigma$
- Combining this with other results: ~ 3.5σ
- More investigation has to be done into the modelling of the S boson
- With more data, we could make fits to additional distributions and come up with stronger results

Le Peintre et son Modèle (The Artist and his Model) – Pablo Picasso (1926)