SAIP2017

Contribution ID: 53

Type: Oral Presentation

Mass-loading effect of graphene foam (GF) on the electrochemical performance of nickel phosphate as an electrode for supercapacitor application

Tuesday, 4 July 2017 11:30 (20 minutes)

This work presents the effect of different contents of graphene foam (GF) on the electrochemical capacitance of nickel phosphate Ni₃(PO₄)₂ nanorods as an electrode material for supercapacitor applications. Ni₃(PO₄)₂ nanorods were synthesized via a hydrothermal method followed by different mass loading of graphene (30, 60, 90 and 120 mg, denoted as Ni₃(PO₄)₂/30 mg GF, Ni₃(PO₄)₂/40 mg GF, Ni₃(PO₄)₂/40 mg GF, Ni₃(PO₄)₂/120 mg GF, ni₃(PO₄)₂/120 mg GF, respectively. The electrochemical behavior of Ni₃(PO₄)₂/120 mg GF, respectively. The electrochemical behavior of Ni₃(PO₄)₂/120 mg GF visub>(PO₄)₂/90 mg GF and Ni₃(PO₄)₂/120 mg GF, respectively. The electrochemical behavior of Ni₃(PO₄)₂/120 mg GF visub</sub>/2</sub>/120 mg GF nanorods composites were analyzed in a three-electrode cell using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) in a 6 M KOH electrolyte. The electrochemical tests showed that the specific capacitance increased with increasing the GF content up to 90 mg then decreased. The Ni₃(PO₄)₂/90 mg GF exhibited the highest specific capacitance of 606 F g⁻¹ (using CV curve) and 462 F g⁻¹ (using CD curve) at 5 mV s⁻¹ scan rate and 0.5 A g⁻¹ current density respectively. The high specific capacitance is attributed to good crystallinity and synergetic interaction of the GF and Ni₃(PO₄)₂ nanorods.

Apply to be
 considered for a student
 award (Yes / No)?

Yes

Level for award
 (Hons, MSc,
 PhD, N/A)?

PhD

Main supervisor (name and email)
and his / her institution

Ncholu Manyala, ncholu.manyala@up.ac.za, University of Pretoria

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

Yes

Primary author: Mr MIRGHNI, Abdulmajid A. (UP)

Co-authors: Mr OYEDOTUN, Kabir O. (UP); Dr MADITO, Moshawe J. (UP); Prof. MANYALA, Ncholu (UP); Mrs NDIAYE, Ndeye M. (UP); Dr MASIKHWA, Tshifhiwa M. (UP)

Presenter: Mr MIRGHNI, Abdulmajid A. (UP)

Session Classification: Physics of Condensed Matter and Materials 1

Track Classification: Track A - Division for Physics of Condensed Matter and Materials