

Contribution ID: 126 Type: Oral Presentation

Ionospheric Electrodynamics within the African sector

Wednesday, 5 July 2017 14:00 (20 minutes)

E x B drift influences plasma distribution and dynamics; hence it has a significant impact on space weather. We are presenting the model of E x B drift developed from magnetic field measurements of a pair of magnetometers at dip equator (geomagnetic latitude: $0.17^{\circ}N$, geographic longitude: $38.77^{\circ}E$) and off- magnetic equator (geomagnetic latitude: $6.0^{\circ}N$, geographic longitude: $39.46^{\circ}E$) within the African sector. The model has been transferred to different equatorial longitude sector. Statistically, the correlation coefficient over $5.77^{\circ}W$ longitude sector is 0.663 compared to 0.794 for the $38.77^{\circ}E$ longitude sector. Quiet times (Kp \leq 3) results generated by the model will also be discussed and compared with ionosonde derived E x B drift.

Apply to be
br> considered for a student
br> award (Yes / No)?

Yes

Level for award

- (Hons, MSc,

- PhD, N/A)?

PhD

Main supervisor (name and email)
-br>and his / her institution

John Bosco Habarulema,jhabarulema@sansa.org.za, South African National Space Agency

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

No

Primary author: Mr DUBAZANE, Makhosonke (SANSA Space Science)

Co-author: Dr HABARULEMA, John Bosco (South African National Space Agency)

Presenter: Mr DUBAZANE, Makhosonke (SANSA Space Science)

Session Classification: Space Science

Track Classification: Track D2 - Space Science