TDAQ systems readout architecture of the Tile Preprocessor Demonstrator for the ATLAS Tile Calorimeter phase-II upgrades

Dingane Hlaluku

University of the Witwatersrand
OVERVIEW

- Introduction
 - Tile Calorimeter
- Trigger and Data AcQuisition (TDAQ) overview and terminology
- TileCal upgrades
- Tile PreProcessor for phase-II
- Demonstrator project
 - Options and changes
- Test with beam setup campaigns
- PPr TDAQ software
- Tests with FELIX
- Test with beam setup results
- Conclusions
The hadronic Tile Calorimeter (TileCal) is the central region of the ATLAS detector and is used to measure energies and directions of hadrons, jets and leptons.

It is a large sampling calorimeter which makes use of steel as the absorber material and plastic scintillating plates readout by Photomultipliers Tubes (PMTs) through wavelength shifting (WLS) fibers.

Mechanically divided into three barrels, one central barrel and two extended barrels.

And operationally, the system is split into four logical partitions which are labeled as LBA and LBC for the long barrel, and EBA and EBC for the extended barrel.

Signals and data from the detector is processed by the Trigger and Data Acquisition (T/DAQ) system.
Trigger: Selects interesting events in real time.
- Level-1: hardware based, rejection factor ~400.
- High-Level Trigger: software based, rejection factor ~100.

DAQ: Collection of apps (~30k) running on a set of hosts.
- Receives event fragments and buffers them in pipelines.
- Build complete events and write event data to disk.
- Provide control, configuration, and monitoring facilities.

Particles from collisions travel through the TileCal deposit energy in the scintillating tiles which produces light. The light is collected by the PMTs through the WLS fibers.

The current TileCal T/DAQ architecture readout electronics will be completely redesigned for HL-LHC phase-II upgrades.
The LHC plans a series of upgrades culminating in the High Luminosity (HL-LHC) in order to reach its intended design luminosity of 7.5×10^{34} cm$^{-2}$ s$^{-1}$ in 2023.

- A new readout architecture with a full-digital trigger system will be implemented in ATLAS for Phase II Upgrade to cope with the new requirements. TileCal will undergo upgrades as well to cope with the HL-LHC.
- The detector components (scintillating tiles, fibers, and PMTs) are in good shape and do not have to be replaced.
- The readout electronics has to be replaced since present digital readout is not compatible with the HL-LHC architecture.
- Aging of parts (time & radiation). Some parts are discontinued.
- To provide full-granularity digital data to the Level-0/1 triggers at 40 MHz.
- The present on-detector electronics is designed to output digital data at the maximum rate of about 100 kHz.
- The digital data is stored on detector in a 6.4 μs-long pipeline.

In the new TDAQ architecture, the front-end (FE) electronics will transmit data to the back-end (BE) electronics Tile PreProcessor (PPr) for every bunch crossing (25 ns) and stored in pipelines for processing.

The new FE electronics are much simpler and will not have any readout limitations like the present system.
Is a high performance double AMC board based on FPGA resources and QSFP modules.
This board has been designed in the ATLAS TileCal Demonstrator project as the first stage for the BE electronics.
It provides an interface path for readout, control and monitoring of the FE electronics, and sends Level 0/1 info to ATLAS for trigger decision.
Decodes and distributes Trigger Timing and Control (TTC) signals to the FE electronics for configuration and synchronization with the LHC clock.
First prototypes manufactured by the Wits High Energy Physics group in South Africa.
THE TILECAL DEMONSTRATOR PROJECT

- Aims to validate on the new T/DAQ architecture system interfaces before the complete installation of the upgraded electronics in ATLAS.
- Super-drawer DEMONSTRATOR composed of 4 independent mini-drawers:
 - 12 PMTs, 12 FE boards (FEB), 1 of 3 options.
 - 1 MainBoard (MB): for the corresponding FEB option and ADC chips.
 - 1 Daughter-board (DB): common design.
 - 1 High Voltage regulation board: 2 options (Remote HV & HV_Optos).
 - 1 adder base board + 3 adder cards (for trigger).
- New Low Voltage Power Supply (LVPS) architecture: redundancy and Point Of Load regulators - LVPS v.8.01.
- Upgrade readout strategy:
 - Data is readout at 40 MHz to the Demonstrator PPr.
 - Digital trigger with possible full granularity and precision.
 - Read-out to Front End LInk eXchange (FELIX) after L0 or L1.

Max PMT# in a detector drawer is 45, even though the Mainboard can load up to 48 PMTs.
A series of tests with beam setup have been initiated in 2015 and are ongoing with the following objectives:

- Aiming at the physics measurements (electrons, muons and hadrons).
- Assess the status of the demonstrator prototype based on the 3-in-1 FEB baseline option and the BE PPr.
- Attention to FATALIC and QIE, and estimate future commission efforts.
- Measuring some detector performance in a well controlled environment for ATLAS.

The FEB options under evaluation for phase-II are the:

- **3-in-1** option. Design following the same approach presently used in TileCal with improved performance from experience learned. Sharper, bi-gain clamping amplifiers and slow integrator 12b ADCs on MB.
- **Charge Integrator and Encoder (QIE)**. New technology for TileCal, but used in other experiments (e.g., CMS). It is an ASIC that does signal conditioning by means of an integrator.
- **Front-End ATLAS Tile Integrated Circuit (FATALIC)**. New technology for TileCal implemented as an ASIC aiming for a low noise chip. FATALIC does signal conditioning by means of a shaper (similarly to 3-in-1).

All 3 options have been evaluated in the lab during test beam campaigns in 2015, 2016 and 2017.
Demonstrator (3-in-1, QIE and FATALIC) drawers have been inserted into TileCal modules.
3 other modules equipped with current systems electronics included for comparison.
Using same DAQ software releases as running in ATLAS experiment.
3-in-1 option is readout using both the PPr and the Legacy BE electronics since it is the only option providing analog trigger signal (Backward compatibility).
FELIX is a PC-based multi-interface device designed to mediate between ATLAS detectors which use the GBT protocol, and the ATLAS DAQ system.
T/DAQ PPr SOFTWARE

- Quick access status checks for PPR and Prometeo Interface.
- Communication via the IPBus hub.
- PPr monitoring - links configuration
- Expert Prometeo Web based Panel.
- Prometeo- a portable testbench for the FE electronics
- Up to 3 PCIe pseudo-FELIX operated in parallel with common PPr firmware and software.
- Prometeo components (HV, LED, ADC boards) and enclosure manufactured in South Africa.
Demonstrator
- Backward compatibility with TTC and TDAQ
- Special segment in TDAQ for configuration
- Calibrations in TDAQ infrastructure
- DQMD (Data Quality Monitoring Display)

TilePPR_Segment for PPr specific control and configuration.

Readout through FELIX emulator with Xillybus ipcore.

FELIX emulator readout
- ASCII- saves formatted stream on local disk.
- Binary- saves data in raw binary format, allowing ATLAS data format.

Upon the reception of a L1 (trigger) Accept signal:
- Pack the data with legacy data format and send events to old Readout Driver (ROD) through SFP.
- Needed for backward compatibility with legacy DAQ for installation in P1 before Phase-II.
- We need to accommodate the data to old data format (only 7 samples, 10 bits samples).

Pack data with full precision and send it to FELIX.
- Event: 16 samples x 16 bit x 12 channel x 2 gain = 6.2 kbit / mini drawer.
- Max rate: Testbeam: 10 kHz → 62 Mbit/s → 8 bit elink / mini drawer
- Max rate: P1 : 100 kHz → 620 Mbit/s/mini drawer
Continue using the FELIX emulator for the testbeam in June and we will move to the official one for September.

In TDAQ the PPr sends the data samples in parallel to the ROD (7 samples, 10 bits) and to FELIX (16 samples, 12 bits).

Slow integrator (calibration and lumi measurement)
- Continuos slow charge integration for each channel to FELIX.
- 19 kbit/sec → 2bit elink /mini drawer.

Finalize FELIX binary readout;
- Need better mechanisms for data synchronization.

Stream FELIX data to TDAQ for validation of ATLAS data format.

Control through IPBus, useful for calibration runs.

Monitoring available for the Legacy system and the Demonstrator through the ROD emulator.

Start/stop controlled through python scripts, well tested with small issues.
The new 3-in-1, QIE and FATALIC systems were calibrated and evaluated with test beams muons in 2015, 2016 and 2017. The results speak of a strong upgrade system. Results from Muon Beam with energy of 200 GeV. Data is as simulated from EM scale (1.05 fC/GeV) and Monte-Carlo.
The new 3-in-1, QIE and FATALIC systems were calibrated and evaluated with test beams electrons in 2015, 2016 and 2017.

The results speak of a strong upgrade system

Electron beam with energy of 50 GeV for QIE and FATALIC.

Electron beam with energy of 100 GeV for 3-in-1.
The new 3-in-1, QIE and FATALIC systems were calibrated and evaluated with test beams hadrons in 2015, 2016 and 2017.

The results speak of a strong upgrade system.

The EM scale was increased by 5x for hadron studies.

This is only done for 3-in-1 Demonstrator and the results are shown for 20 GeV hadron beam.

The total calorimeter energy is shown.
SYSTEM LINEARITY TESTS

- QIE - A well-known injected current is measured simultaneously with QIE and the current integrator.
- 3-in-1 - A known charge is injected into the PMTs and measured through the 3-in-1 card.
- FATALIC - Similar to the 3-in-1, but signal is measured by the FATALIC chip.
- All systems working well within simulated specifications.

ATLAS work in Progress
CONCLUSIONS

❖ TileCal Upgrade will happen in Phase-II (2023)
 ➢ But we want to use the official FELIX during test beams and in P1 when Demonstrator is inserted (maximum 4 FELIX links).

❖ Preliminary tests showed that we can receive TTC signals (clock, L1A, BCRs) and we can send data packets to FELIX.
 ➢ Save data and decode our data fragments within boundaries introduced by FELIX.

❖ Next steps:
 ➢ Update the Gigabit Transceiver (GBT) firmware version.
 ➢ Study the maximum trigger rate to save data on disk for 4 elinks.
 ➢ Integrate the acquisition with the TDAQ software.

❖ Upgrade activities are progressing well with the goal of test-beams to do performance analysis for the 2017 option down-selection.

❖ The reliability and stability of the system has been visibly improved with respect to the 2015 TB.

❖ The upgrade architecture is mature and well understood.
 ➢ “3-in-1” and QIE FE technologies were successfully evaluated with test beams and do not need any major revisions.
 ➢ FATALIC_5 revision has been tested in 2017 and the results speak of a strong technology. The digital data path and detector control worked well.

❖ All the results from 2015/16 test beam campaigns are documented in the Initial Design Report (IDR).
Thank You!!
DEMONSTRATOR CHANGES WRT TO 2015

- **New hardware components**
 - DBv4: No CDCE but GBTx (GigaBit Transceiver) for clock recovery, Remote FPGA reset (more on GBT)
 - Mainboard v2: Frame/bit clock for ADC de-serialisation; Correct channel orientation + new 3in1 cards
 - PPr prototype: new module, no auxiliary boards, operation at 40.08 MHz (4.8 Gbps - 9.6 Gbps), firmware optimisations
 - Common PPr firmware for the 3 Front-End option.

- **PCle module for read-out (basic pseudo-Felix)** - kc705 dev module - PCle
 - GBT link/data-format compatibility with official FELIX
 - Free the IPbus for control, DCS and monitoring
 - Run parameters fragment (run number, L1ID, BCID, calibration)

- **New DCS firmware (DB and PPr)**
- **Mobile Cesium unit in test-beam to perform in-situ Cs calibration runs (New in 2016)**
The 3-in-1 signal processing approach uses a shaper circuit to transform a PMT pulse into an easy to digitize waveform/pulse whose amplitude is proportional to the total charge of the original PMT pulse. This approach is presently used in TileCal. The shaper circuit contains only passive elements and its performance is very predictable and well-characterized with calibration procedures.
The FATALIC approach also uses shaping like the 3-in-1 but the pulse shape is different.
Digitization is done inside the chip.
The QIE circuit does not shape the PMT pulse to be digitized at 40 Msps. Instead, it directly integrates the PMT anode current in 25 ns intervals. Every 25 ns a QIE gives two numbers:
- Charge (current integrated over a 25 ns period).
- Time (when current crossed a threshold). 1 ns resolution
The total charge of a PMT pulse (energy) is obtained as a sum of two or three QIE samples.
ANALYSIS FROM DIFFERENT FEB
MiniPOD TX
- 12 x 10 Gbps
- L1 trigger communication

MiniPOD RX
- 12 x 10 Gbps
- Test purposes

Clock generator
- LMK03806B
- 10 diff outputs
- Low jitter

UART-USB ports

Ethernet port
- 10/100/1000 Mpbs
- PC communication

SFP module
- TTC reception
- Communication with current DAQ system
- 4 x QSFP modules
- FE communication
- Each module at 40 Gbps
- Total max. BW: 160 Gbps

Power Modules
- Linear Technologies
- Low noise jitter cleaners
- TI CDCE62005
- Low jitter (< 1ps)
- Clean recovery clocks for GTX
- Unify clock domains

Power supervisory IC
- LT LTC2977
- Power sequencing
- Protection
- Current, voltage, temp.

TOP

BOTTOM

PPr PROTOTYPE
READOUT PRINCIPLE STRATEGY

HV distribution among PMTs
LV distribution for electronics

Off detector

Data PrePRocessing PPR

FELIX

40 MHz

(E,t)
L0 trigger

Very front-end
3-in-1; FATALIC; QIE (1 per channel)

Main Board
1 per 12 channels

Daughter Board
1 per 12 channels

i(t)

Signal shaping, digitization, charge injection, digital sum

Ensure interface with back-end electronics