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Abstract. We report the use of Einstein rings to reveal the quantized and dynamical states of 
spacetime in a region of impressed gravitational field as predicted by the Nexus Paradigm of 
quantum gravity. This in turn reveals the orbital speeds of objects found therein and the radius 
of curvature of the quantized spacetime. Similarities between the nexus graviton and the 
singular isothermal sphere (SIS) in the cold dark matter (CDM) paradigm are highlighted. 
However unlike the singular isothermal sphere, the nexus graviton does not contain 
singularities or divergent integrals. This provides a viable solution to the core cusp problem. In 
this work, data from a sample of fifteen Einstein rings published on the CfA-Arizona Space 
Telescope Lens Survey (CASTLES) website is used to probe the quantized properties of 
spacetime.  

Keywords: (Quantum Gravity; Gravitational Lensing; Dark Matter; Quantum Vacuum; 
Graviton) 

1. Introduction
In 1937, Zwicky 1 provided the first reproducible evidence of the presence of unseen matter in the 
Coma Cluster group of galaxies by applying the classic virial theorem. In the same paper he also 
suggested that the gravitational field of galaxy clusters is expected to deflect the light observed from 
background galaxies. Today, numerous observations 2,3,4,5,6 have confirmed the presence of Zwicky’s 
dark matter  and most studies 7,8,9,10  have used gravitational lensing to explore its distribution in 
cluster groups. Strong lensing allows the determination of important physical parameters such as the 
total mass of the lensing object without any assumptions on the dynamics. Einstein rings (ER) are 
particularly important in constraining the mass within the Einstein radius with great accuracy. 
Currently, it is thought that dark matter is the source of much of the lensing potential. Here we report 
the use of ERs to calculate the quantum state of spacetime in the presence of the baryonic mass. A 
remarkable feature of the Nexus Paradigm of quantum gravity is that under certain critical conditions, 
the intrinsic curvature of spacetime in the n-th quantum state is the source of deflection and not the 
curvature due to the presence of baryonic mass. This feature is clearly illustrated in the Bullet Cluster 
11.
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2. Theoretical Background

The nature of dark matter along with that of dark energy is one of the most perplexing unsolved 
problems in astrophysics and has largely divided the astrophysical community into some suggesting 
a modification of the law of gravity 12,13,14,15 and others suggesting the presence of unseen baryonic or 
non-baryonic matter 16,17,18,19. The Nexus Paradigm of quantum gravity 20, 21 is a part of a third 
approach that seeks to explain dark matter and dark energy as an effect from quantum gravity. In this 
paradigm, spacetime is a nexus graviton field with 1060 eigenstates. 
A nexus graviton in the n-th quantum state as described in Ref:[20-21] is a spherically symmetric 
pulse or wave packet of four-space with the following components      

∆𝑥𝑥𝑛𝑛
𝜇𝜇 = 2𝑟𝑟𝐻𝐻𝐻𝐻

𝑛𝑛𝑛𝑛
𝛾𝛾𝜇𝜇 ∫ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘𝜇𝜇𝑥𝑥𝜇𝜇)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑘𝑘𝜇𝜇∞

−∞     

= 𝛾𝛾𝜇𝜇 ∫ 𝑎𝑎𝑛𝑛𝑖𝑖𝜑𝜑(𝑛𝑛𝑖𝑖𝜇𝜇)𝑑𝑑𝑘𝑘𝜇𝜇
∞
−∞  (1) 

 Here 𝛾𝛾𝜇𝜇are the Dirac matrices, 𝑟𝑟𝐻𝐻𝐻𝐻 is the Hubble radius, 𝜑𝜑(𝑛𝑛𝑖𝑖𝜇𝜇) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘𝜇𝜇𝑥𝑥𝜇𝜇)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  are Bloch 
energy eigenstate functions  kx = kµxµ , 𝑘𝑘𝜇𝜇 = 𝑛𝑛𝑛𝑛

𝑟𝑟𝐻𝐻𝐻𝐻
𝜇𝜇  ,𝑠𝑠 =  ±1, ±2 … 1060 and the metric

𝑑𝑑𝑠𝑠2 = 𝑔𝑔(𝑛𝑛)𝜇𝜇𝜇𝜇𝑑𝑑𝑥𝑥𝜇𝜇𝑥𝑥𝜇𝜇 is the intensity of the pulse computed from the the inner product of 
Eqn(1). Percieving the metric equation as the intensity of a four- pulse  forms the basis of the 
nexus graviton formulation of space-time. 
The norm squared of the four- momentum of the n-th state graviton is  

(ℏ)2𝑘𝑘𝜇𝜇𝑘𝑘𝜇𝜇 = 𝐸𝐸𝑛𝑛2

𝑐𝑐2
− 3(𝑛𝑛ℎ𝐻𝐻0)2

𝑐𝑐2
= 0        (2)          

where H0 is the Hubble constant (2.2 x 10-18 s-1) and can be expressed in terms of the cosmological 
constant, Λ as   

𝛬𝛬𝑛𝑛 = 𝐸𝐸𝑛𝑛2

(ℎ𝑐𝑐)2 = 𝑖𝑖𝑛𝑛2

(2𝑛𝑛)2 = 𝑠𝑠2𝛬𝛬      (3) 

The curvature of spacetime in the n-th quantum state is then expressed as            
         𝐺𝐺(𝑛𝑛)𝜇𝜇𝜇𝜇 = 𝑠𝑠2𝛬𝛬𝑔𝑔𝜇𝜇𝜇𝜇                                                                     (4)  

where G(n)μν is the Einstein tensor of spacetime in the n-th state. The dark energy arises from the 
emission of a ground state graviton such that Eqn. (4) becomes 

         𝐺𝐺(𝑛𝑛)𝜇𝜇𝜇𝜇 = (𝑠𝑠2 − 1)𝛬𝛬𝑔𝑔𝜇𝜇𝜇𝜇                                                           (5)    
If the graviton field is perturbed by the presence of baryonic matter then Eqn.(5) becomes 

         𝐺𝐺(𝑛𝑛)𝜇𝜇𝜇𝜇 = 𝑘𝑘𝑇𝑇𝜇𝜇𝜇𝜇 + (𝑠𝑠2 − 1)𝛬𝛬𝑔𝑔𝜇𝜇𝜇𝜇                                              (6) 
From Ref.[20] the solution to Eqn. (4) is computed as 

𝑑𝑑𝑠𝑠2 = −�1 − � 2
𝑛𝑛2
��𝑑𝑑𝑡𝑡2 + �1 − � 2

𝑛𝑛2
��

−1
𝑑𝑑𝑟𝑟2 + 𝑟𝑟2(𝑑𝑑𝜃𝜃2 + 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝑑𝑑𝜑𝜑2)             (7) 

In the above equation n = 1 state refers to the ground state of spacetime and is the quantum state of 
space inside a black hole event horizon. The state in close proximity to this event horizon is the n=2 
state. There are no singularities in Eqn. (7). 
For weak gravitational fields that characterize distances ranging from solar system to cosmic scales, 
the solution to Eqn.(6) for an aggregation of baryonic matter M(r) within a radius r, as provided in 
Ref.[20] is expressed as 

𝑑𝑑2𝑟𝑟
𝑑𝑑𝑡𝑡2

= 𝐺𝐺𝐺𝐺(𝑟𝑟)
𝑟𝑟2

+ 𝐻𝐻0𝑣𝑣𝑛𝑛 − 𝐻𝐻0𝑠𝑠   (8) 
Here c is the speed of light. 
The first term on the right is the Newtonian gravitational acceleration, the second term is a radial 
acceleration induced by spacetime in the n-th quantum state and the final term is acceleration due to 
dark energy. The dynamics becomes strongly non-Newtonian when 

𝐺𝐺𝐺𝐺(𝑟𝑟)
𝑟𝑟2

= 𝐻𝐻0𝑠𝑠 = 𝑣𝑣𝑛𝑛2

𝑟𝑟
(9)
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These are conditions in which the spacetime curvature due to baryonic matter is annulled by that due 
to the presence of dark energy. Under such conditions 

            𝑟𝑟 = 𝑣𝑣𝑛𝑛2

𝐻𝐻0𝑐𝑐
 (10) 

Substituting for r in Eqn.(9) yields           
        𝑣𝑣𝑛𝑛4 = 𝐺𝐺𝐺𝐺(𝑟𝑟)𝐻𝐻0𝑠𝑠                                                              (11) 

This is the baryonic Tully – Fisher relation. The conditions permitting the dark energy to cancel out 
the curvature due to baryonic matter leave quantum gravity as the unique source of curvature. Thus 
condition (9) reduces Eqn.(8) to  

𝑑𝑑2𝑟𝑟
𝑑𝑑𝑡𝑡2

= 𝑑𝑑𝑣𝑣𝑛𝑛
𝑑𝑑𝑡𝑡

= 𝐻𝐻0𝑣𝑣𝑛𝑛                (12) 
From which we obtain the following equations of galactic and cosmic evolution 

𝑟𝑟𝑛𝑛 = 1
𝐻𝐻0
𝑒𝑒(𝐻𝐻0𝑡𝑡)(𝐺𝐺𝐺𝐺(𝑟𝑟)𝐻𝐻0𝑠𝑠)

1
4   (13) 

  𝑣𝑣𝑛𝑛 = 𝑒𝑒(𝐻𝐻0𝑡𝑡)(𝐺𝐺𝐺𝐺(𝑟𝑟)𝐻𝐻0𝑠𝑠)
1
4  (14) 

 𝑎𝑎𝑛𝑛 = 𝐻𝐻0𝑒𝑒(𝐻𝐻0𝑡𝑡)(𝐺𝐺𝐺𝐺(𝑟𝑟)𝐻𝐻0𝑠𝑠)
1
4  (15) 

Here rn is the radius of curvature of spacetime in the n-th quantum state (which is also the radius of 
the n-th state nexus graviton), vn the radial velocity of objects embedded in that spacetime, and an, 
their radial acceleration within it. The amplification of the radius of curvature with time explains the 
existence of ultra-diffuse galaxies and the spiral shapes of most galaxies (see Refs: [20-21]). The 
increase in radial velocity with time explains why early type galaxies composed of population II stars 
are fast rotators. Eqn.(15) explains late time cosmic acceleration which began once condition (9) was 
satisfied or equivalently from Eqn.(6), when the density of baryonic matter was at the same value as 
that of dark energy. Thus condition (9) also explains the Coincidence Problem. 
3. Gravitational lensing and quantum gravity
In the context of the Nexus Paradigm, a gravitational field is a region of spacetime in a low quantum
state or a zone with a low vacuum expectation value

  �𝜓𝜓𝑛𝑛(𝑟𝑟𝑖𝑖)�𝑇𝑇00�𝜓𝜓𝑛𝑛(𝑟𝑟𝑗𝑗)� = 𝑠𝑠2𝜌𝜌𝐷𝐷𝐸𝐸         (16) 
where ψn is the wave function of the quantum vacuum in the n-th quantum state and ρDE is the density 
of dark energy. From Ref.[20], the flow of spacetime in each quantum state of curvature rn, induces a 
constant radial speed onto any test particle embedded within it of 

     𝑣𝑣𝑛𝑛 = 𝐻𝐻0𝑟𝑟𝑛𝑛 = 𝑠𝑠/𝑠𝑠         (17) 
The deflection of light through gravitational lensing by spacetime in the n-th quantum state is 

        𝛼𝛼 = (𝜃𝜃 − 𝛽𝛽)𝐷𝐷𝑙𝑙𝑙𝑙/𝐷𝐷𝑙𝑙 = 4/𝑠𝑠2         (18) 

Fig.1 
From which we obtain 

        𝑠𝑠 = 2� 𝐷𝐷𝑠𝑠
𝐷𝐷𝑙𝑙𝑠𝑠(𝜃𝜃−𝛽𝛽)

(19)
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Thus the orbital speed of a particle embedded in the n-th quantum state is 

𝑣𝑣𝑛𝑛 = 𝑠𝑠�𝐷𝐷𝑙𝑙𝑠𝑠(𝜃𝜃−𝛽𝛽)
4𝐷𝐷𝑠𝑠

= 𝑒𝑒(𝐻𝐻𝑡𝑡)(𝐺𝐺𝐺𝐺(𝑟𝑟)𝐻𝐻0𝑠𝑠)
1
4   (20) 

In the case where β= 0 an Einstein ring forms and Eqn.(20) becomes 

𝑣𝑣𝑛𝑛 = 𝑠𝑠�𝐷𝐷𝑙𝑙𝑠𝑠𝜃𝜃𝐸𝐸
4𝐷𝐷𝑠𝑠

= 𝑒𝑒(𝐻𝐻𝑡𝑡)(𝐺𝐺𝐺𝐺(𝑟𝑟)𝐻𝐻0𝑠𝑠)
1
4       (21) 

Here we observe similarities with the cold dark matter (CDM) model where the dispersion velocities 
for a SIS are calculated from  

          𝜎𝜎 = 𝑠𝑠�𝐷𝐷𝑙𝑙𝑠𝑠𝜃𝜃𝐸𝐸
4𝑛𝑛𝐷𝐷𝑠𝑠

     (22) 

Hence Eqn.(21) is the link between the CDM paradigm and the baryonic Tully-Fisher relation. In such 
a scenario rn, would denote the radius of the CDM halo. However, in the Nexus Paradigm, the CDM 
is vacuum energy as described by Eqn.(16).Moreover Eqn.(7) describing the nexus graviton has no 
singularity nor divergences found in the SIS model. 
If the radial velocity and baryonic mass content in the lensing system are known then one can 
calculate the time t, which has elapsed since the lensing system became a system in dynamical 
equilibrium as stipulated by condition (9). 

4. Results
We apply Eqn.(17) and Eqn.(21) to determine the value of n, rn, vn and an for a spherically symmetric
lensing system from a sample of fifteen ERs lenses published on the CASTLES website
(www.cfa.havard.edu/castles/) . The calculations assume a flat universe in which H0=69.6 km/s/Mpc
ΩΛ=0.714 ΩM= 0.286 .The results are displayed in Table 1.
Table 1

Lens Dls/Ds 𝜽𝜽𝑬𝑬/asc n rn/Mpc vn/kms-1 an/10-10m/s-2 

JVA 
B1938+666 

0.50 0.44 1948 2.27 154.0 0.0034 

B0218+357 0.17 0.16 5508 0.80 54.5 0.0012 

PG1115+080 0.64 1.16 1054 4.19 284.6 0.0063 

B1608+656 0.35 1.14 1268 3.49 236.6 0.0052 

RXJ1131-
1231 

0.45 1.90 982 4.50 305.5 0.0067 

Q0047-2808 0.58 1.35 1027 4.30 292.1 0.0064 

PMNJ0134-
0931 

0.37 0.37 2456 1.80 122.1 0.0027 

HE0230-
2130 

0.49 1.03 1231 3.62 243.7 0.0054 

CFR503.107
7 

0.34 1.05 1581 2.80 189.8 0.0042 

HST15433+
5352 

0.52 0.59 1640 2.69 182.9 0.0040 

MG1549+30
47 

0.83 0.85 1081 4.09 277.5 0.0061 

PKS1830-
211 

0.34 0.50 2214 2.00 135.5 0.0030 

MG2016+11
2 

0.33 1.76 1192 3.71 251.7 0.0055 
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Q2237+030 0.94 0.89 993 4.45 302.1 0.0066 

HE0435-
1223 

0.51 1.21 1156 3.82 259.5 0.0057 

5. Discussion
The results indicate that the orbital velocity of the constituents of a lensing system can be attributed to
a globule of quantized vacuum energy called the nexus graviton of density ρ=n2ρDE with a radius of
dimensions in the order of a few megaparsecs. When in close proximity to other gravitons, tidal forces
arise which transform the nexus graviton from a spherical shape to an ellipsoid. The profile of the
ellipsoid is an ellipse and the graviton radius becomes

 𝑟𝑟𝑛𝑛 = 𝑅𝑅𝑛𝑛
1−𝑒𝑒𝑐𝑐𝑒𝑒𝑙𝑙𝑒𝑒

    (23) 

Where e is the eccentricity. 
Hence the orbital velocity becomes 

   𝑣𝑣𝑛𝑛 = 𝐻𝐻0𝑟𝑟𝑛𝑛 = 𝐻𝐻0𝑅𝑅𝑛𝑛
1−𝑒𝑒𝑐𝑐𝑒𝑒𝑙𝑙𝑒𝑒

 (24) 

From which we calculate density as 

𝜌𝜌 =
𝑠𝑠2

𝑣𝑣𝑛𝑛2
𝜌𝜌𝐷𝐷𝐸𝐸 =

𝑅𝑅𝐻𝐻2 (1− 𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝜑𝜑)2𝜌𝜌𝐷𝐷𝐸𝐸
𝑅𝑅𝑛𝑛2

          = 𝑠𝑠2(1 − 𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝜑𝜑)2𝜌𝜌𝐷𝐷𝐸𝐸               (25) 
where RH is the Hubble radius. The deflection of light under these conditions becomes 

       𝛼𝛼 = (𝜃𝜃 − 𝛽𝛽)𝐷𝐷𝑙𝑙𝑙𝑙/𝐷𝐷𝑙𝑙 = 4/𝑠𝑠2(1− 𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝜑𝜑)2              (26) 
Here we notice an increase in vacuum energy density with a decrease in curvature radius. The density 
profile is thus stratified in quantized concentric radii rn=RH/n with a maximum radius at RN<RH and 
the minimum at Rmin=RH/1060. Spacetime in the inner core of the nexus graviton is therefore flat as 
described by Eqn.(7) and curved at large radii. In the CDM paradigm, the gravitational lensing at 
galactic and cosmic scales is an effect arising largely due to the presence of the hypothetical 
dark matter in the lensing system and so it can be used to constrain the dark matter mass 
model of lenses as in Fig.2. In the Nexus Paradigm, the gravitational lensing can be used to 
constrain the value of the quantum state n of spacetime within the lensing system also as in 
Fig.2. The relationship between the quantum state of space-time and the hypothetical dark 
matter is expressed in Eqn.(28) if M(r) is considered as the dark matter distribution. 

By comparing the quantized metric of Eqn.(7) with Schwarzschild metric we notice that the quantum 
state of spacetime around baryonic matter increases with distance from the mass 

Fig.2 The Abell 520 Cluster 
The Abell 520 cluster in Fig.2 shows eight 
interacting nexus gravitons. The interaction 
deforms each graviton into an ellipsoid of cross 
section described by Eqn. (25). 

7 
8 
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2
𝑛𝑛2

= 2𝐺𝐺𝐺𝐺(𝑟𝑟)
𝑐𝑐2𝑟𝑟

               (27) 
Such that 

 𝑠𝑠2 = 𝑐𝑐2𝑟𝑟
𝐺𝐺𝐺𝐺(𝑟𝑟)

       (28) 

Thus the curvature of spacetime in the inner core of the nexus graviton is only curved by the presence 
of baryonic matter and not by the increased vacuum energy density. This provides a viable solution to 
the so called core-cusp problem 22 of astrophysics. If the nexus graviton is surrounded by multiple 
gravitons tugging on it gravitationally, then the eccentricity becomes a function of the azimuthal angle 
ψ. Two gravitons of radii rn=f(ψ) and rs=g(ψ)will intersect when f(ψ) =g(ψ). 

6. Conclusion
In this work we have used Einstein rings to reveal the quantized and dynamical states of spacetime in
a region of impressed gravitational field as predicted by the Nexus Paradigm of quantum gravity. This
endeavour has enabled us to constrain orbital speeds of objects found therein and the radius of
curvature of the quantized spacetime, a technique similar to the singular isothermal sphere in the cold
dark matter paradigm. The benefit of the nexus graviton formulation is that unlike the singular
isothermal sphere, it does not contain singularities or divergent integrals. This provides a viable
solution to the core cusp problem.
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