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Abstract. In this contribution, classes of shear-free cosmological dust models with irrotational
fluid flows will be investigated in the context of scalar-tensor theories. In particular, the
integrability conditions describing a consistent evolution of the linearised field equations of
quasi-Newtonian universes are presented.

1. Introduction
Although general relativity theory (GR) is a generalization of Newtonian gravity in the presence
of strong gravitational fields, it has no properly defined Newtonian limit in cosmological scales.
Newtonian cosmologies are an extension of the Newtonian theory of gravity and are usually
referred to as quasi-Newtonian, rather than strictly Newtonian formulations [1, 2, 3]. The
importance of investigating the Newtonian limit for general relativity in cosmological contexts
is that, there is a viewpoint that cosmological studies can be done using Newtonian physics,
with the relativistic theory only needed for examination of some observational relations [1].
General relativistic quasi-Newtonian cosmologies have been studied in the context of large-scale
structure formation and non-linear gravitational collapse in the late-time universe. This despite
the general covariant inconsistency of these cosmological models except in some special cases
such as the spatially homogeneous and isotropic, spherically symmetric, expanding (FLRW)
spacetimes. Higher-order or modified gravitational theories of gravity such as f(R) theories of
gravity have been shown to exhibit more shared properties with Newtonian gravitation than
does general relativity.

In [1], a covariant approach to cold matter universes in quasi-Newtonian cosmologies has
been developed and it has been applied and extended in [2] in order to derive and solve the
equations governing density and velocity perturbations. This approach revealed the existence
of integrability conditions in GR. The purpose of the current study is two-fold: to apply the
lineaized covariant consistency analysis and study the existence of quasi-Newtonian cosmological
space-times in scalar-tensor theories of gravitation. A direct result of our analysis will be
presented in the form of the integrability conditions we derive.

1.1. f(R) and scalar-tensor models of gravitation
The so-called f(R) theories of gravity are among the simplest modification of Einstein’s GR.
These theories come about by a straightforward generalisation of the Lagrangian in the Einstein-
Hilbert action [4, 5] as

Sf(R) =
1

2

∫
d4x
√
−g
(
f(R) + 2Lm

)
, (1)
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where Lm is the matter Lagrangian and g is the determinant of the metric tensor gµν . Another
modified theory of gravity is the scalar-tensor theory of gravitation. This is a broad class of
gravitational models that tries to explain the gravitational interaction through both a scalar
field and a tensor field. A sub-class of this theory, known as Brans-Dicke (BD) theory, has an
action of the form

SBD =
1

2

∫
d4x
√
−g
[
φR− ω

φ
∇µφ∇µφ+ 2Lm

]
, (2)

where φ is the scalar field and ω is a coupling constant considered to be independent of the
scalar field φ. An interesting aspect of f(R) theories of gravity is their proven equivalence with
the BD theory of gravity [5, 6] with ω = 0. If we define the f(R) extra degree of freedom 1 as

φ ≡ f ′ − 1 , (3)

then the actions (1) and (2) become dynamically equivalent.
In a FLRW background universe, the resulting non-trivial field equations lead to the following
Raychaudhuri and Friedmann equations that govern the expansion history of the Universe [7]:

Θ̇ +
1

3
Θ2 = − 1

2(φ+ 1)

[
µm + 3pm + f −R(φ+ 1) + Θφ̇+ 3φ

′′
( φ̇2
φ′2

)
+ 3φ̈− 3

φ̇φ̇
′

φ′

]
, (4)

Θ2 =
3

(φ+ 1)

[
µm +

R(φ+ 1)− f
2

+ Θφ̇
]
, (5)

where Θ ≡ 3H = 3
ȧ

a
, H being the Hubble parameter, a(t) is the scale factor, and µm and pm

are the energy density and isotropic pressure of standard matter, respectively.
The linearised thermodynamic quantities for the scalar field are the energy density µφ, the

pressure pφ, the energy flux qφa and the anisotropic pressure πφab, respectively given by

µφ =
1

(φ+ 1)

[1

2

(
R(φ+ 1)− f

)
−Θφ̇+ ∇̃2φ

]
, (6)

pφ =
1

(φ+ 1)

[1

2

(
f −R(φ+ 1)

)
+ φ̈− φ̇φ̇

′

φ′ +
φ

′′
φ̇2

φ′2
+

2

3
(Θφ̇− ∇̃2φ)

]
, (7)

qφa = − 1

(φ+ 1)

[ φ̇′

φ′ −
1

3
Θ
]
∇̃aφ , (8)

πφab =
φ

′

(φ+ 1)

[
∇̃〈a∇̃b〉R− σab

( φ̇
φ′

)]
. (9)

The total (effective) energy density, isotropic pressure, anisotropic pressure and heat flux of
standard matter and scalar field combination are given by

µ ≡ µm
(φ+ 1)

+ µφ, p ≡ pm
(φ+ 1)

+ pφ, πab ≡
πmab

(φ+ 1)
+ πφab, qa ≡

qma
(φ+ 1)

+ qφa . (10)

1.2. Covariant equations
Given a choice of 4-velocity field ua in the Ehlers-Ellis covariant approach [8, 9], the FLRW
background is characterised by the equations [2, 3]

∇̃aµm = 0 = ∇̃apm = ∇̃aΘ , qma = 0 = Aa = ωa ,

πmab = σab = Eab = 0 = Hab , (11)

1 f ′ , f ′′, etc. are the first, second, etc. derivatives of f w.r.t. the Ricci scalar R.
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where Θ, Aa, ω
a, and σab are the expansion, acceleration, vorticity and the shear terms. Eab

and Hab are the “gravito-electric” and “gravito-magnetic” components of the Weyl tensor Cabcd
defined from the Riemann tensor Rabcd as

Cabcd = Rabcd − 2g[a[cR
b]
d] +

R

3
g[a[cg

b]
d] , (12)

Eab ≡ Cagbhuguh, Hab ≡ 1
2ηae

ghCghbdu
eud . (13)

The covariant linearised evolution equations in the general case are given by [2, 3, 10]

Θ̇ = −1

3
Θ2 − 1

2
(µ+ 3p) + ∇̃aAa , (14)

µ̇m = −µmΘ− ∇̃aqma , (15)

q̇ma = −4

3
Θqma − µmAa , (16)

ω̇〈a〉 = −2

3
Θωa − 1

2
ηabc∇̃bAc , (17)

σ̇ab = −2

3
Θσab − Eab +

1

2
πab + ∇̃〈aAb〉 , (18)

Ė〈ab〉 = ηcd〈a∇̃cH〉b
d −ΘEab − 1

2
π̇ab − 1

2
∇̃〈aqb〉 − 1

6
Θπab , (19)

Ḣ〈ab〉 = −ΘHab − ηcd〈a∇̃cE〉b
d +

1

2
ηcd〈a∇̃cπ〉bd , (20)

and the linearised constraint equations are given by

Cab0 ≡ Eab − ∇̃〈aAb〉 − 1

2
πab = 0 , (21)

Ca1 ≡ ∇̃bσab − ηabc∇̃bωc −
2

3
∇̃aΘ + qa = 0 , (22)

C2 ≡ ∇̃aωa = 0 , (23)

Cab3 ≡ ηcd(∇̃cσdb) + ∇̃〈aωb〉 −Hab = 0 , (24)

Ca5 ≡ ∇̃bEab +
1

2
∇̃bπab −

1

3
∇̃aη +

1

3
Θqa = 0 , (25)

Cab ≡ ∇̃bHab + (µ+ p)ωa +
1

2
ηabc∇̃bqa = 0 . (26)

2. Quasi-Newtonian spacetimes
If a comoving 4-velocity ũa is chosen such that, in the linearised form

ũa = ua + va, vau
a = 0, vav

a << 1 , (27)

the dynamics, kinematics and gravito-electromagnetics quantities (11) undergo transformation.
Here va is the relative velocity of the comoving frame with respect to the observers in the
quasi-Newtonian frame, defined such that it vanishes in the background. In other words, it
is a non-relativistic peculiar velocity. Quasi-Newtonian cosmological models are irrotational,
shear-free dust spacetimes characterised by [2, 3]:

pm = 0 , qma = µmva , πmab = 0 , ωa = 0 , σab = 0 . (28)

The gravito-magnetic constraint equation (24) and the shear-free and irrotational condition (28)
show that the gravito-magnetic component of the Weyl tensor automatically vanishes:

Hab = 0 . (29)
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The vanishing of this quantity implies no gravitational radiation in quasi-Newtonian cosmologies,
and equation (26) together with equation (28) show that qma is irrotational and thus so is va:

ηabc∇̃bqa = 0 = ηabc∇̃bva . (30)

Since the vorticity vanishes, there exists a velocity potential such that

va = ∇̃aΦ . (31)

3. Integrability conditions
It has been shown that the non-linear models are generally inconsistent if the silent constraint
(29) is imposed, but that the linear models are consistent [2, 3]. Thus, a simple approach to
the integrability conditions for quasi-Newtonian cosmologies follows from showing that these
models are in fact a sub-class of the linearised silent models. This can happen by using the
transformation between the quasi-Newtonian and comoving frames. The transformed linearised
kinematics, dynamics and gravito-electromagnetic quantities from the quasi-Newtonian frame
to the comoving frame are given as follows:

Θ̃ = Θ + ∇̃ava , (32)

Ãa = Aa + v̇a +
1

3
Θva , (33)

ω̃a = ωa −
1

2
ηabc∇̃bvc , (34)

σ̃ab = σab + ∇̃〈avb〉 , (35)

µ̃ = µ, p̃ = p, π̃ab = πab, q̃φa = qφa (36)

q̃ma = qma − (µm + pm)va , (37)

Ẽab = Eab, H̃ab = Hab . (38)

It follows from the above transformation equations that

p̃m = 0 , q̃ma = 0 = Ãa = ω̃a , π̃mab = 0 = H̃ab , σ̃ab = ∇̃〈avb〉 , Ẽab = Eab . (39)

These equations describe the linearised silent universe except that the restriction on the shear
in equation (39) results in the integrability conditions for the quasi-Newtonian models. Due to
the vanishing of the shear in the quasi-Newtonian frame, equation (18) is turned into a new
constraint

Eab −
1

2
πφab − ∇̃〈aAb〉 = 0 . (40)

This can be simplified by using equation (17) and the identity for any scalar ϕ:

ηabc∇̃aAc = 0⇒ Aa = ∇̃aϕ . (41)

In this case ϕ is the covariant relativistic generalisation of the Newtonian potential.

3.1. First integrability condition
Since equation (40) is a new constraint, we need to ensure its consistent propagation at all
epochs and in all spatial hypersurfaces. Differentiating it with respect to cosmic time t and by
using equations (9), (19) and (22), one obtains

∇̃〈a∇̃b〉
[
ϕ̇+

1

3
Θ +

φ̇

(φ+ 1)

]
+
[
ϕ̇+

1

3
Θ +

φ̇

(φ+ 1)

]
∇̃a∇̃bϕ = 0 , (42)
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which is the first integrability condition for quasi-Newtonian cosmologies in scalar-tensor theory
of gravitation and it is a generalisation of the one obtained in [2], i.e., (42) reduces to an identity
for the generalized van Elst-Ellis condition [1, 2, 3]

ϕ̇+
1

3
Θ = − φ̇

(φ+ 1)
. (43)

Using equation (14) with the time evolution of the modified van Elst-Ellis condition, we obtain
the covariant modified Poisson equation in scalar-tensor gravity as follows:

∇̃2ϕ =
µm

2(φ+ 1)
−(3ϕ̈+Θϕ̇)+

1

2(φ+ 1)

[
f−R(φ+1)+

(3φ̇
′

φ′
−Θ
)
φ̇−3φ̈+3

( 2

(φ+ 1)
− φ

′′

φ′2

)
φ̇2−∇̃2φ

]
.

(44)
The evolution equation of the 4-acceleration Aa can be shown, using equations (43) and (22),
to be

Ȧa +
[2

3
Θ +

φ̇

(1 + φ)

]
Aa = − 1

2(1 + φ)

[
µmva +

(1

3
Θ +

φ̇′

φ′
− 2φ̇

(1 + φ)

)
∇̃aφ

]
. (45)

3.2. Second integrability condition
There is a second integrability condition arising by checking for the consistency of the constraint
(40) on any spatial hyper-surface of constant time t. By taking the divergence of (40) and by
using the following identity:

∇̃b∇̃〈aAb〉 =
1

2
∇̃2Aa +

1

6
∇̃a(∇̃cAc) +

1

3
(µ− 1

3
Θ2)Aa , (46)

which holds for any projected vector Aa, and by using equation (41) it follows that:

∇̃b∇̃〈a∇̃b〉ϕ =
2

3
∇̃a(∇̃2ϕ) +

2

3
(µ− 1

3
Θ2)∇̃aϕ . (47)

By using equations (47), (22) and (25), one obtains:

∇̃aµm −
[
φ̇+

2

3
(φ+ 1)Θ

]
∇̃aΘ +

1

(φ+ 1)

[f
2
− µm + Θφ̇− Θφ̇′(φ+ 1)

φ′

]
∇̃aφ

−2(φ+ 1)∇̃2(∇̃aϕ)− 2
[
µm +

R(φ+ 1)

2
− f

2
−Θφ̇− Θ2(φ+ 1)

3

]
∇̃aϕ

−∇̃2(∇̃aφ) = 0 , (48)

which is the second integrability condition and in general it appears to be independent of the
first integrability condition (42). By taking the gradient of equation (43) and using equation
(22), one can obtain the peculiar velocity:

va = − 1

µm

[
2(φ+ 1)∇̃aϕ̇+

( φ̇′
φ′
− ϕ̇− 3φ̇

(φ+ 1)

)
∇̃aφ

]
. (49)

By virtue of equations (15) and (16), va evolves according to

v̇a +
1

3
Θva = −Aa . (50)
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The coupled evolution equations (45) and (50) decouple to produce the second-order propagation
equation of the peculiar velocity va. By using equations (4) and (5) in equation (50) one obtains:

v̈a +
[
Θ +

φ̇

(φ+ 1)

]
v̇a +

[1

9
Θ2 − 1

6(φ+ 1)
(5µm − f − 4Θφ̇)

]
va

+
1

(φ+ 1)

[ φ̇

(φ+ 1)
− φ

′′

2φ′ −
Θ

6
− φ̇

′

2φ′ +
φ

′′
φ̇

2φ′2

]
∇̃aφ = 0 . (51)

By substituting equation (49) into equation (50) one obtains

2(φ+ 1)∇̃aϕ̈+ 2
[
φ̇+ Θ(φ+ 1)

]
∇̃aϕ̇−

[
µm − 2(φ+ 1)ϕ̈+ φ̈− φ̇φ̇

′

φ′ −
φ̇2φ

′′

φ′2
+ ϕ̇φ

′

+
3φ̇2

(φ+ 1)

]
∇̃aϕ+

[3φ
′′
φ̇φ̇

′

φ′3
+
φ̈

′

φ′ −
φ̇

′2

φ′2
− φ̇φ̇

′′

φ′2
+

Θφ̇
′

φ′ −
ϕ̇φ̇

′

φ′ −
2φ

′′
φ̇2

φ′4
− 3φ̇2φ

′′

φ′2(φ+ 1)

−Θϕ̇− ϕ̈+
3φ̇

(φ+ 1)2
+
φ

′′′
φ̇2

φ′3
− 3φ̈

(φ+ 1)
− 3Θφ̇

(φ+ 1)

]
∇̃aφ = 0 . (52)

By using equation (15) together with equation (43), one can show that the acceleration potential
ϕ satisfies

ϕ̈ =
1

9
Θ2+

1

6(φ+ 1)

[
µm+f−R(φ+1)−3φ̈+Θφ̇+

3φ̇φ̇
′

φ′ −
3φ̇2φ

′′

φ′2
+

6φ̇2

(φ+ 1)
−∇̃2φ

]
− 1

3
∇̃2ϕ . (53)

4. Conclusion
In this work, we have demonstrated how imposing special restrictions to the linearized
perturbations of FLRW universes in the quasi-Newtonian setting result in the integrability
conditions that give us consistency relations for the evolution and constraint field equations in
the scalar-tensor theories of gravity. In addition, we have derived the velocity and acceleration
propagation equations in scalar-tensor theories.
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