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Abstract. Quantum wave equations with logarithmic nonlinearity are motivated by the
conventional (linear) quantum formalism and theory of quantum liquids. The matrix
generalization of the logarithmic equation is introduced, which is expected to complement
and extend the existing range of physical applications of the conventional (“single-channel”)
logarithmic wave equation; its properties and possible applications are studied.

1. Introduction
We consider the nonlinear logarithmic Schrödinger equation (LSE)

i∂tψ(x⃗, t) = (−∆+ VLSE)ψ(x⃗, t) , VLSE = −b ln |ψ(x⃗, t)|2, (1)

where ∆ is the d-dimensional Laplacian, b is a nonlinear coupling assumed to be a positive
constant here; the equation has the wavefunction solutions ψ ∈ L2(ℜd). This equation,
as well as its relativistic analogue (which is obtained by replacing the derivative part with
the d’Alembert operator), finds numerous applications in extensions of quantum mechanics
[1, 2], physics of quantum fields and particles [3, 4, 5, 6, 7], optics and transport or diffusion
phenomena, nuclear physics, theory of dissipative systems and quantum information [8, 9], theory
of superfluidity [10, 11, 12] and effective models of physical vacuum and classical and quantum
gravity [13, 14, 15, 16].

The physical meaning of the solutions ψ and proper interpretation of their dynamics are
determined by a phenomenological background of a given application. Still, the generic
mathematical features of Eq. (1) (and, first of all, the logarithmic form of its nonlinearity)
can be shared. For the purposes of illustration one can select, as a starting point, the context of
a linear quantum wave equation. In the Schrödinger picture, the evolution of quantum systems
is commonly described by the Schrödinger equation

i∂tψ(x⃗, t) = Ĥψ(x⃗, t) , Ĥ = −∆+ V (x⃗), (2)

which is linear by construction. In this equation, the choice of the potential V (x⃗) is usually
determined by a number of considerations. Let us consider as an example the exactly solvable
(ES) harmonic oscillator V(HO)(x⃗) ∼ |x⃗|2, which has the equidistant, purely vibrational spectrum
of the low-lying bound-state energies E(HO) and the localized wavefunctions of the form:

ψ(HO)(x⃗, t) ∼ exp(−iE(HO)t) exp
(
−|x⃗|2/2 +O(ln |x⃗|)

)
, (3)
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which can be regarded as a natural realization of the above-mentioned Madelung decomposition.
The other choices of a potential can be considered on grounds of either the formal relevance of
V (x⃗) ̸= V(HO)(x⃗) or its capability of describing the variability of the dynamics (by adding
perturbations to V(HO)(x⃗)).

Such an asymptotic behavior of wavefunctions may be perceived as related to a certain
equivalence-class property of potentials,

V(initial)(x⃗) = |x⃗|2 +O(ln |x⃗|) ∼ − ln[ψ∗(x⃗, t)ψ(x⃗, t)] = V(generalized)(x⃗). (4)

It is thus not too surprising that the logarithmically nonlinear Schrödinger equation (1) was
proposed as a “minimal” generalization of its linear predecessor in quantum theory [1].

2. Logarithmic wave equation in theory of quantum liquids
If one accepts that strongly correlated helium atoms can form a bound state characterized by
a single macroscopical wavefunction then the wave equation describing such object cannot be
of the Gross-Pitaevskii (GP) type, also known as the cubic Schrödinger (in the relativistic field
theory, its analogue would be the quartic scalar field theory ϕ4). There exist at least two reasons
for this. Firstly, the GP approach is a perturbative approach, which takes into account only
two-body interactions and neglects anomalous contributions to self-energy, which is a robust
approximation for dilute system like cold gases. However, it is unlikely to be sufficient for more
dense objects like liquids: according to aforesaid quantum liquid’s atoms are delocalized and
thus nothing prevents them from getting involved into multiple-body interactions. One example
of why multi-body (three and more) interactions are very important for forming bound states
of bosons at low temperatures is the Efimov state, which has been experimentally observed
in helium. The second issue is that the ground-state wavefunction of the GP BEC model in
absence of an external potential trap does not describe a localized object. Instead, the free GP
condensate tends to occupy all available volume - as such one needs to apply some kind of a
trap, in order to confine the condensate and stabilize the system. This feature is more pertinent
to gases than to liquids.

Luckily, there exists another candidate where the above-mentioned issues simply do not occur
in the first place. This is nonlinear Bose liquid defined by virtue of the logarithmic Schrödinger
equation of the type (1), except that the condensate wavefunction is normalized not to one but
to a total amount of condensate particles, see Refs. [14, 10, 11, 12]. The logarithmic Bose
liquid has a number of features suitable for our objectives: it implicates not only binary but
also multiple-body interactions (when three or more bodies can scatter simultaneously), and its
ground state is the so-called gausson – a spherically-symmetric object which is localized and
stable even in absence of a trapping potential, with the interior density obeying the Gaussian
law

ρ = |ψ(x⃗, t)2| ∼ exp (−|x⃗|2/a2), (5)

where a is a characteristic size. Notice that this object is different from the classical droplet
because it does not have border in a classical sense: its stability is supported by nonlinear
quantum effects in the bulk, rather than by surface tension.

In the work [11], an analytical theory of structure and excitations in superfluid helium was
proposed, which elaborates on above-mentioned microscopical aspects and goes beyond the GP
approximation. It consists of two nested models which act on different length scales, but are
connected via the parametric space: quantities and values of parameters in the long-wavelength
model are derived from the short-wavelength part. The short-length model justifies appearance
of collective degrees of freedom that can be used for describing the volume elements (fluid
parcels) of the quantum liquid. Thus, an intrinsic structure of a fluid parcel is described using
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the non-perturbative approach based on the logarithmic wave equation: one can show that the
interior density of the element obeys the Gaussian distribution.

The fact that the logarithmic model was so instrumental in describing one of the realistic
quantum Bose liquids we know of, gives us a hope that it can be also useful in a theory of
physical vacuum. According to the latter, the physical vacuum is described by an essentially
non-relativistic superfluid, while the Lorentz symmetry and relativistic gravity emerge in
the linearized (“phononic”) regime. This can be shown, independently, by means of the
modular group approach [13], fluid/gravity correspondence [14], Bogoliubov method [10], and
Arnowitt-Deser-Misner formalism [16]. Furthermore, there already exist some experimental
data suggesting a connection between the phenomena of superfluidity and gravity [17, 18]. As a
matter of fact, the superfluid vacuum paradigm allows us to explore a border of the relativity’s
applicability range, which is crucial for truly understanding of the spacetime approach, as well
as to go beyond it [15].

3. Analytical solutions
In this section we pay our attention to the possible simulations of the interaction between a
system and its environment which would be based on the logarithmic type of the interaction’s
nonlinearity. Let us, therefore, start from the choice of the first nontrivial case and consider
solutions of the matrix LSE with A being a 2× 2 matrix. For the sake of simplicity let us also
limit our attention to the case of the single spatial dimension replacing vector x⃗ by scalar x.
Then we can write

i∂tA+ ∂xxA+ b ln(A†A)A = 0, (6)

and we also impose that
x1∫

x0

tr(A†A)dx = N , (7)

assuming that the system is confined to the interval of x ∈ [x0, x1]. The latter formula comes
from the normalization condition

∫
dx⃗ tr(A†A) ≡ ⟨A|A⟩ = N , where integration is taken over

a spatial volume taken by the system, N being a constant usually interpreted as a number of
particles inside such a volume, while tr here is the standard matrix-trace operation.

Furthermore, below we consider the cases when we managed to obtain exact analytical
solutions of Eq. (6).

3.1. Diagonal case
We shall start our analysis from the simple yet nontrivial case of the two coupled LSEs, A being
a diagonal matrix

A =

(
ψ1(x, t) 0

0 ψ2(x, t)

)
, (8)

where ψa(x, t) are complex-valued functions. In this model the auxiliary cross-coupling terms
are neglected. Considering this case enables us to contemplate, more easily, a pair of uncoupled
logarithmic Schrödinger equations in a way which would emphasize also certain parallelism with
the concept of the coupled channels in the linear-theory setting. Moreover, in the language of
phenomenology, any pair of similar individual equations, linear or nonlinear, may be perceived
as mimicking a fully separated evolution of an isolated system S1 (of our immediate interest)
and of its remote and irrelevant, “switched-off” environment S2.

In the more realistic situations one can only rarely neglect the possible cross-interaction
between subsystems S1 and S2 completely. Still, the most immediate reward of the study of
such a mutual interaction usually comes when one assumes that the resulting “perturbation” of
the relevant subsystem S1 remains weak.
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The ground-state solution of Eq. (6) can be found exactly. In a rest frame, it has the form
of the gausson, i.e., by the Gaussian packet modulated by the de Broglie plane wave,

ψa(x, t) = Ca exp

(
−1

2
b x2 + νax− iEat

)
, (9)

where a = 1, 2 and where
Ea = b(1− lnC2

a)− ν2a (10)

is energy of a wave in the ath channel. Quantities Ca and νa are integration constants related,
together with b, to the mean and variance of the Gaussian packet.

If one imposes also the normalization condition (7) then one obtains an additional constraint
for the integration constants

F1(x0)− F1(x1) + F2(x0)− F2(x1) = 2

√
b

π
N , (11)

where we denoted Fa(x) = C2
a exp

(
ν2a
b

)
erf

(
νa−bx√

b

)
. For instance, when x1 and x0 are set to

plus and minus infinity then this constraint takes a simple form
2∑

a=1
C2
a exp

(
ν2a
b

)
=

√
b
πN .

Note that due to the Galilean symmetry of LSE, from solution (9) one can always obtain
gausson solutions whose center of mass propagates with velocity va, independently for each
channel. For instance, one can check that the following function

ψa(x, t) = Ca exp

[
−1

2
(x− vat) (b(x− vat)− 2νa − iva)

]
, (12)

is also a solution of Eqs. (6), (9), provided

(va/2)
2 + ν2a = b(1− lnC2

a), (13)

va being another real-valued integration constant.

3.2. Off-diagonal case
Contrary to the previous case, let us assume that it is the channel-coupling terms which are
dominating now. Therefore, one can assume A being an off-diagonal matrix

A =

(
0 ψ̄1(x, t)

ψ̄2(x, t) 0

)
, (14)

where ψ̄a(x, t) are complex-valued functions.
Still, the ground-state solution of Eq. (6) can be found exactly. In a rest frame, it also has

the form of the Gaussian packet modulated by the de Broglie plane wave,

ψ̄a(x, t) = Ca exp

(
−1

2
b x2 + νax− iĒat

)
, (15)

where a = 1, 2, and
Ēa = ν2a − b(1− lnC2

a) (16)

is energy of a wave, Ca and νa are integration constants related, together with b, to the mean
and variance of the Gaussian packet. If one imposes also the normalization condition (7) then
one obtains an additional constraint for the integration constants, which is identical to Eq. (11).
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Comparing the solution (15) with its diagonal analogue (9), one can see an interesting feature:
two solutions can be transformed from one another by a simple time inversion

ψa(x, t) = ψ̄a(x,−t), Ea = −Ēa, (17)

which can indicate that the diagonal and off-diagonal terms of the matrix A describe the
processes happening in opposite directions of time, or, alternatively, having opposite signs of
their energy eigenvalues.

4. Conclusion
The logarithmically nonlinear quantum wave equation, both in its original and matrix forms, is
introduced and discussed based on motivations coming from different areas of quantum physics.
We also considered some special cases and analytical solutions, for the case of 2×2 matrices. The
solutions seem to have a general feature of possessing a Gaussian wave packet shape modulated
by the de Broglie plane waves. Besides, the diagonal and off-diagonal components of the ma-
trix turn out to be describing the waves with opposite signs of energy or, alternatively, moving
in opposite directions of time. Other types of matrix solutions can be a subject of future studies.
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