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Abstract. In this paper we report on the study of two-level and multilevel atoms interacting
with one or more laser beams. The system is analyzed using the semi-classical approach where
the dynamics of the atom is described quantum mechanically using Liouville’s equation, while
the laser is treated classically using Maxwell’s equations. Firstly, we present results of a two-
level atom interacting with a single laser beam and demonstrate Rabi oscillations between the
two levels. We then examine the effects of laser modulation on the dynamics of the atom.
The behaviour of the laser as it propagates through the atomic ensemble is studied by solving
Maxwell’s equations numerically. We study the nonlinear process called four-wave mixing that
occurs when two or more pump beams, having different frequencies, interact with four different
levels of a nonlinear medium. We make use of general energy levels in a diamond configuration.
We present results of four-wave mixing for various detuning.

1. Introduction
Recently there has been a number of papers describing entangled photon pair generation using
four-wave mixing in Rubidium atomic ensemble[1, 2, 3]. At the Cape Peninsula University
of Technology an experiment is under development to investigate the properties of entangled
photons generated by four-wave mixing in warm and cold Rubidium atoms. These atoms will
be used for quantum key distribution in the future. In this paper we report on computational
simulations of this process.

We report on the computational study of the interaction between laser beams and two
and multilevel atoms. We use a semi-classical approach in which the dynamics of the atoms
(described by the density matrix elements) are governed by the Von Neumann-Liouville equation,

ı~
∂ρ

∂t
=
[
Ĥ, ρ̂

]
+ relaxation terms (1)

while the laser beam is described by the wave equation derived from Maxwell’s equations. The
Hamiltonian of the total system is Ĥ = Ĥ0 + ĤI , where Ĥ0 is the unperturbed Hamiltonian
and ĤI is the interaction term. The relaxation terms contain the dissipative effects. We first
discuss a two level atom interacting with a single laser beam and examine the dynamics of the
populations and coherence terms of the density matrix elements. Thereafter we examine the
behaviour of the laser beams as it propagates in multilevel atoms.



The overview of the paper is as follows: Section 2 describes the interaction of a two level atom
with a single laser beam. Results showing the effects of a uniform and modulated laser beam
are given. The study of the two-level atom is included to introduce basic ideas such as Rabi
frequency, detuning and density matrix elements. Four-wave mixing is discussed in Section 3.
Results are given for various parameters.

2. Laser-atom interactions
The interaction between a laser beam and a sample of stationary atoms having only two possible
energy levels (separated in frequency by ω0) has the following interaction Hamiltonian:

ĤI = −e ~E · ~̂D cosωt (2)

Here −e ~̂D represents the dipole moment operator of the atom, ~E is the electric field or amplitude
of the laser beam and cosωt represents the time variation of the electric field of the laser beam
where ω is the laser radian frequency. ĤI is then used in the Von Neumann Liouville equation
to describe the time evolution of the density matrix elements of the system. The Von Neumann
equation is used to derive the following equations for a two level atom (called Optical Bloch
equations):

∂ρ11
∂t

=
1

2
ıΩ(ρ12 − ρ21) + 2γspρ22 (3)

∂ρ12
∂t

=
1

2
ıΩ(ρ11 − ρ22) +

[
ı(ω0 − ω)− γsp

]
ρ12 (4)

∂ρ21
∂t

= −1

2
ıΩ(ρ11 − ρ22) +

[
− ı(ω0 − ω)− γsp

]
ρ12 (5)

∂ρ22
∂t

= −1

2
ıΩ(ρ12 − ρ21)− 2γspρ22 (6)

where Ω = eE〈D〉/~ is called the Rabi frequency and γsp represents a decay/de-coherence
coefficient. ρ11 and ρ22 tells us the probability of the atom being in the ground and excited states,
respectively. ρ12 and ρ21 are the interference terms of the atom indicative of superposition. We
solve the above numerically.

2.1. Results
Results of the numerical solution of Equations 3-6 are given in Figures 1-2. Figure 1 corresponds
to a uniform laser beam and Figure 2 deals with a modulated laser beam. In Figure 1, the blue
curve represents ρ11, the red curve ρ22, the green curve ρ12 and the magenta curve ρ21. The laser
is switched on at t = 0 s with ρ11 = 100% and ρ22 = 0%. Rabi oscillations are demonstrated in
Figure 1A where ω0−ω = 0. In Figure 1B the laser is detuned i.e. ω0−ω 6= 0. The interference
between Ψ1 and Ψ2 is decreased, where Ψi is the wave function corresponding to level i. A
small dissipation is introduced in Figure 1C in the form of γsp. This results in the interference
between Ψ1 and Ψ2 to decay to the point where the probability of superposition is close to 0%.
The phase space plots in Figure 1D are related to Figures 1A-C: Rabi oscillation where the
atom continues on the same path infinitely, (— black); laser detuning where the atom continues
on the same path but at a different frequency to the Rabi frequency, (— purple); dissipation
where the atom never follows the exact same path and diminishes at 0, (— orange).

The laser frequency, ω in the above equations, equations (3) to (6), is altered by including
terms of modulation by means of a sinusoidal variation to the laser frequency. The modulated
detuning is then

(ω0 − ω) = δ +D sin(2πfmt) (7)
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Figure 1. General features of a two-level atom interacting with a uniform laser beam. Plots
A-C are the density matrix elements corresponding to (A) zero laser detuning demonstrating
Rabi oscillation, (B) non-zero laser detuning, (C) zero detuning with added dissipation. Plot
(D) shows the phase space plot, ∂ρ11/∂t vs ρ11 for the above cases.
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Figure 2. Two-level atom interacting with a laser beam where the modulated frequency is
approximately equal to the Rabi frequency and the amplitude of modulation is small. The plots
are: (A) time series; (B) phase space plot and (C) fast Fourier transform.

where δ has a fixed value, fm is the modulation frequency and D represents the level of
modulation. Making use of various parameters in equation (7) gives rise to interesting behaviour
of the atomic dynamics. These are seen in Figure 2. The time series, Figure 2(A), shows an
irregular curve. The phase space plot (B) shows that the atom deviates from the ground state
from cycle to cycle - the path does not repeat itself. The atom behaves in a chaotic manner. In
the Fourier spectra (C) there are three components that arise at 2.36 Hz, 10.72 Hz and 15.37
Hz, none of which appear at the Rabi frequency, Ω = 12.73 Hz (ignoring the DC component at
0 Hz). These results show that the atom has tendencies to behave in a chaotic manner. Similar
results have been seen by Pisipati et al. [4].

3. Nonlinear mixing in multilevel atoms
Next, we study the parametric process of four-wave mixing by having two pump beams, of
different frequencies, interact with four levels of a hypothetical atom. Figure 3 shows the energy
level structure where |1〉, |2〉, |3〉 and |4〉 are four relevant energy levels of the atom with |1〉
being the ground state and |2〉, |3〉 and |4〉 being excited states.
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Figure 3. Four-wave mixing geometry. A- E1 to E4 are the corresponding energies of each
level, ω1 and ω2 are the frequencies of two pump laser beams and ω3 and ω4 are the frequencies
of two internally generated photons. B- E1 and E2 represent the electric fields of the pump
beams and E3 and E4 represent the internally generated photons (these should not be confused
with the energies).

In our analysis co-propagating beams, E1 and E2, having different wavelengths are used as
pumps beams. We investigate the production/variation of E3 and E4 across the longitudinal
section of the sample. We assume that the pump laser beams are strong enough so that they
do not get depleted as they propagate through the atomic ensemble. We also assume that all
photons propagate in the positive z-direction. The atomic levels are assumed to be such that
the photons of frequency ω1, ω2, ω3 and ω4 couple only transitions between |1〉 ↔ |2〉, |2〉 ↔ |3〉,
|3〉 ↔ |4〉 and |4〉 ↔ |1〉, respectively, that is, they are very much detuned compared to the other
transitions.

We now explain the derivation of the equation needed for predicting the electric fields, E3

and E4. Further details of these derivations are provided in [5]. The behaviour of the electric
fields E3 and E4 corresponding to frequencies ω3 and ω4 respectively are described by Maxwell’s
equations:

∂

∂z
E3(z) = ı

ω3

2εc

N

V
µ34ρ

(3)
34 (8)

∂

∂z
E4(z) = ı

ω4

2εc

N

V
µ41ρ

(3)
41 (9)

where ρ
(3)
ij are the third order density matrix elements and are obtained from the master equa-

tion. These equations, equations (8) and (9), are derived from Maxwell’s wave equation [6]

where we have written the polarization in terms of ρ
(3)
34 and ρ

(3)
41 .

The total Hamiltonian is
H = H0 +HI (10)

where HI = −µ̂ ·E, −µ̂ is the dipole moment of the atom and E is the total electric field. The
master equation (Liouville-von Neumann equation) that we solve is

ρ̇ = − ı
~
[
H ′I , ρ

]
+ relaxation terms (11)

where the interaction Hamiltonian term, H ′I , is in the interaction picture.

Making use of perturbation theory we let

ρ = ρ(0) + λρ(1) + λ2ρ(2) + ... (12)



and expand and group terms by order to obtain the the population and coherence terms. The
third order terms that are important for solving Maxwell’s equation for the ω3 and ω4 terms are

ρ̃
(3)
34 and ρ̃

(3)
41 . The expansion for ρ̃

(3)
34 is

ρ̃
(3)
34 =

1

(∆34 − ıΓ34)

[
1

~3
µ21µ32µ14Ẽ1Ẽ2Ẽ

∗
4

(∆42 + ıΓ42)

(
1

(∆21 − ıΓ21)
− 1

(∆41 + ıΓ41)

)
+

1

~3
µ34|µ14|2Ẽ3|Ẽ4|2

γ41

(
2Γ41

∆2
41 + Γ2

41

)
− 1

~3
µ21µ32µ14Ẽ1Ẽ2Ẽ4

(∆21 − ıΓ21)(∆31 − ıΓ31)

− 1

~3
µ34|µ14|2Ẽ3|Ẽ4|2

(∆41 − ıΓ41)(∆31′ − ıΓ31)

]
e−ıω3t

(13)

where ∆ij represents the detuning between levels |i〉 and |j〉, Γij represents the decay rate of
the corresponding coherence ρij and γij represents the decay of the population ρii. µij are the
matrix elements of the dipole moment µ in the basis |1〉, |2〉, |3〉 and |4〉. A similar equation is

obtained for ρ̃
(3)
41 . Equations for the fourth order terms which give the populations of each state

as a function of detuning can be found in [7].

3.1. Results
We solve equations (8) and (9) numerically for various values of z and use updated values of

ρ̃
(3)
34 and ρ̃

(3)
41 each time. We provide plots of the Rabi frequencies (which are proportional to

the electric fields) of the emerging beams. Population values are also provided. Figures 4 and 5
show results of the population as a function of detuning of pump1 (∆21) and pump2 (∆32).

Figure 4 shows results for pump1 (∆21) at a constant negative detuning as pump2 (∆32)
is varied. The atoms will not get excited from |1〉 → |2〉 easily due to the negative detuning
of pump1 (∆21). From the slight decrease in ρ11 we can assume that most of the atoms have
remained in the ground state. As ∆32 decreases, corresponding to a smaller detuning, we see
ρ22 decreasing slightly. This is because atoms have been excited from |2〉 → |3〉. At the same
time ρ33 and ρ44 have increased by approximately the same amount. Note that ρ33 and ρ44 are
shifted to the right relative to zero detuning to counteract the negative detuning of pump1 beam
in order to get maximum transfer of population to levels |3〉 and |4〉.

Figure 5 shows results for pump2 (∆32) at a constant positive detuning as pump1 (∆21) is
varied. Plots for ρ11 and ρ22 show a decrease and increase in the populations at the respective
levels as ∆21 decreases. We see that the plots for ρ33 and ρ44 have been shifted in the negative
direction to counteract the positive detuning of the pump2 beam in order to get maximum
transfer of population to levels |3〉 and |4〉.

We note that spontaneously generated photons are directly proportional to the populations
ρ22, ρ33 and ρ44. There are certain values of detuning for which there is maximum coherent
beam intensity while the populations are away from their peak values.

4. Summary and Conclusion
We have investigated laser-atom interactions by first examining a two level atom interacting
with a single laser beam where Rabi oscillations have been demonstrated. Dissipation effects
show up as decay in the populations and de-coherence terms in the density matrix elements.
Chaotic behaviour was also seen to occur when a modulated laser is used.

The analysis was extended to include the nonlinear process called four-wave mixing. One
of the advantages of entangled photons generated in cold atoms via four-wave mixing is that
they have better spectral characteristics and are better matched for absorption by the same
type of atom. Various scenarios have been tested where one laser beam was kept constant while
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Figure 4. Plots from top to bottom
are of Rabi frequency (|Ω|2) and
populations (ρ11, ρ22, ρ33 and ρ44) as
the pump2 beam is varied (∆32/Γ32).
Pump1 beam is kept constant at a
negative detuning (∆21).
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Figure 5. Plots from top to bottom
are of Rabi frequency (|Ω|2) and
populations (ρ11, ρ22, ρ33 and ρ44) as
the pump1 beam is varied (∆21/Γ21).
Pump2 beam is kept constant at a
positive detuning (∆32).

the other was varied and vice versa. Maximum intensities of the coherent beams as well as
populations were shown to be dependent on the laser detuning.
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