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Abstract. The evolution of the Cabibbo-Kobayashi-Maskawa matrix elements, the Jarlskog
invariant and the quark mixings are derived for the one-loop renormalisation group equations
in a five-dimensional model for an SU(3) gauge group compactified on an S1/Z2 orbifold. In
this work we have assumed that there is a fermion doublet and two singlets located at the fixed
points of the extra dimension. This work builds on earlier works of gauge couplings and Yukawa
coupling evolutions, which pointed to some interesting phenomenology in this toy model of
gauge-Higgs unification.

1. Introduction
The Standard Model (SM) of particle physics is believed to be an effective low energy theory
for a number of reasons, where one of these reasons is to try and understand the fermion mass
hierarchy and quark mixings [1]. In the SM there is a hierarchy of the quark masses belonging
to various generations of the up-type quark masses (mt,mc,mu) and also the down-type quark
masses (mb,ms,md) [2]:

mt � mc � mu, mb � ms � md. (1)

In gauge theories, the renormalisable fermion masses come from mass terms such as f̄Mf and
also arise from Yukawa terms like f̄Y fΦ. For these Yukawa terms, once the Higgs doublet
acquires a vacuum expectation value, all the SM fermions acquire a mass, where this mass is
proportional to their Yukawa couplings [3]:

Yt,c,u =
mt,c,u

v
Yb,s,d =

mb,s,d

v
. (2)

Yt,c,u and Yb,s,d are the nontrivial Yukawa couplings eigenvalues, v is the vacuum expectation
value of the Higgs field, where this value can be fixed from the measurement of the W boson
mass:

v =
2MW

g
' 246GeV. (3)

In the standard electroweak model with three quark families, the quark sector contains ten free
parameters, six quark masses and also four flavour mixing parameters [4]. In order to look into
the dynamics of fermion mass and flavour mixing we need to extend the SM. We expected that



any new physics beyond the SM shall appear above the MZ ∼ 91.2 GeV scale. In order to
build a mass model of quarks at the high energy scale, one can use the Renormalisation Group
Equations (RGEs). We need this technique to fill in the space between the predictions of the
model at µ�MZ and the experimental ones at µ ≤MZ [5]. We are using these RGEs in order
to study the asymptotic behaviour of the Lagrangian parameters, such as Yukawa couplings for
both up-type quarks and down-type quarks and also the mixing angles θ12, θ13 and θ23 [6]. In
order to compute the running of quark masses above the MZ scale we are going to use the quark
masses and the mixing parameters, which are obtained at the MZ scale to determine the Yukawa
couplings Yu and Yd. After doing this, we need to solve the RGEs of the Yukawa couplings, in
order to get the running of the quark masses at any energy scale [5]. In order to diagonalise the
quark mass matrices, one can use an unitary matrix as follows [3, 7]:

uL = (UuL)u′L, ucR = (UucR)†u′R, dL = (UdL)d′L, dcR = (UdcR)†d′R. (4)

However, this will lead to the following:

(UucR)†Yu(UuL) = diag(yu, yc, yt), (5)

(UdcR)†Yd(UdL) = diag(yd, ys, yb), (6)

or equivalently we can diagonalise the quark mass matrices appearing in the Lagrangian of
Yukawa interactions by using the bi-unitary transformation [3, 4]:

(UuL)†Mu(UucR) = diag(mu,mc,mt), (7)

(UdL)†Md(UdcR) = diag(md,ms,mb). (8)

We use this bi-unitary transformation in order to change all our quark fields from their flavour
eigenstate basis to the basis of mass eigenstates [4]. Let us assume that we are working in the
basis where the Yukawa couplings for the up-type quark Yu is diagonal, as appears in Eq. (5),
then the mass eigenstates of the down-type quark are connected to their weak eigenstates by
the Cabibbo-Kobayashi-Maskawa (CKM) matrix VCKM [5]:

V †CKMYdY
†
d VCKM = diag(l2d, l

2
s , l

2
b ). (9)

For the other way around, that is, if we are working in the basis in which the Yukawa coupling
for the down-type quarks are diagonal, then the mass eigenstates of the up-type quark are given
by:

V †CKMYuY
†
uVCKM = diag(k2d, k

2
s , k

2
b ). (10)

Furthermore, we can build the Yukawa couplings for the down-type quarks from their eigenvalues
and also from the CKM matrix [5].

There are many ways to look at the quark mass hierarchy and flavour mixings; we shall
investigate an SU(3) gauge group compactified on an S1/Z2 orbifold which has size R−1 = 1
TeV, 5 TeV and 20 TeV. In this paper we assume that the fermion doublet and the two singlet
are located at the fixed points of the extra-dimension, the quark masses and the flavour mixings
are derived at one-loop level [8].

2. The evolution of CKM matrix in 5 dimension for an SU(3) gauge group
The SM of particle physics has been very successful in describing most of the particle
phenomenology known to date [9], but it possesses some problems whose solution could imply
physics beyond the SM. The SM is not like QCD and QED, it is the theory which violates parity



(P), time reversal (T) and charge conjugation (C). The C and P separately are not a good
symmetry of the SM, but the combination CP, in the case of only one family of matter fields, or
even if we have two families, is a good symmetry. Since we have three families in the SM, CP is
not a good symmetry. All of the SM Lagrangian is invariant under CP transformations, except
the part where the CKM matrix appears.

In order to study the CKM matrix, let us start with ūiLγ
µdiL and express it in terms of mass

eigenstates.

ūiLγ
µdiL = ū′hL(UuL)hiγ

µ(UdL)†ijd
′
jL = (UuL)hi(U

dL)†ij ū
′
hLγ

µd′jL, (11)

because in the above equation the two matrices are different, when we compute the product
of two unitary matrices we still get a unitary matrix. This unitary matrix is called the CKM
matrix

(UuL)hi(U
dL)†ij ≡ Vhj . (12)

In order to parameterise the quark sector’s flavour mixing we need the CKM matrix [10],
and it has 9 parameters. Let us see how the CKM can be parameterised in terms of these
9 parameters[11]:

V =

 eiτ1 0 0
0 eiτ2 0
0 0 eiτ3

Vst
 eiσ1 0 0

0 eiσ2 0
0 0 eiσ3

 . (13)

Vst is the standard parametrisation and it is given by:

Vst =

 1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
iδ

0 1 0
−s13e−iδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 , (14)

where cij ≡ cos θij , sij ≡ sin θij [12]. From the standard parameterisation in Eq. (14). The
CKM matrix has the following form [13]

Vst =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 . (15)

From the experimental point of view we know that sin θ13 � sin θ23 � sin θ12 � 1, and we can
express this hierarchy using the Wolfenstein parametrisation [14]:

sin θ23 =
|Vcb|√

|Vud|2 + |Vus|2
, (16)

and

sin θ12 =
|Vus|√

|Vud|2 + |Vus|2
. (17)

The RGEs for the CKM matrix beyond the R−1 scale is given as follows [15]:

16π2
dViγ
dt

= 12S(t)

[ ∑
σ,j 6=i

k2i + k2j
k2i − k2j

l2σViσV
∗
jσVjγ +

∑
j,σ 6=γ

l2γ + l2σ
l2γ − l2σ

k2jV
∗
jσVjγViσ

]
, (18)

where the energy scale parameter t= ln(µ/MZ) and S(t) = MZRe
t. As we mentiond earlier,

our renormalisation point is the Z boson mass. Furthermore, we can introduce the Jarlskog
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Figure 1. Evolution of the mass ratio for three different values of the compactification radius
we have used: 4 TeV (dotted red line), 8 TeV (dot-dashed blue line), 20 TeV (dashed green
line); as a function of the scale parameter t. In the left panel is the evolution of the mass ratio
mu/mt, and the right panel is the evolution of the mass ratio mc/mt.

rephasing-invariant parameter J , which is crucial to measuring CP violation, and it is given
through the unitarity properties of VCKM, as [4]:

Im(VkαVlβV
∗
kβV

∗
lα) = J

∑
m,δ

(εklmεαβδ), (19)

where the subscript (k, l or m) runs over the (u, c, t) quarks and the subscript (α, β or δ) runs
over the (d, s, b) quarks. In particular, in this paper, we are using the following J to present the
CP violation phenomena

J = Im(VcsVtbV
∗
cbV
∗
tb). (20)

Thus, one can write its square as:

J2 = |Vtb|2|Vcs|2|Vts|2|Vcb|2−
1

4

(
1−|Vtb|2−|Vcs|2−|Vts|2−|Vcb|2+|Vtb|2|Vcs|2+|Vts|2|Vcb|2

)
. (21)

For completeness, the independent parameters of VCKM are |Vud|, |Vus|, |Vcd| and |Vcs| and they
take the following initial values:

|Vud| = 0.9738, |Vus| = 0.2196, |Vcd| = 0.224, |Vcs| = 0.996. (22)

We can define the RGE invariant quantity in the hierarchical limit mb � ms [16]:

R23 = sin(2θ23) sinh

[
ln

(
mb

ms

)]
. ⇒ R23 = sin θ23 cos θ23

(
mb

ms

)
. (23)

3. Numerical Results
In FIG.1 we present the evolution of the mass ratio for the one-loop calculation for three different
compactification scales: R−1 = 4 TeV, 8 TeV and 20 TeV. We expect new physics to come into
play when we reach our cut-off. The cut-off for our effective theory when t = 4.1400, 4.4475,
4.8538 for R−1 = 4 TeV, 8 TeV, 20 TeV respectively. In the left panel we present the evolution
of mu/mt; in this case one can see that the SM (the black solid line) behaves like λ8, where
λ ∼ 0.22. Through the numerical analysis of the one-loop calculation, we observe that when the
fifth dimension contributions switch on, the mass ratio mu/mt decreases whenever the energy
increases, and this creates a significant change of order of λ8. In the right panel we are showing
the evolution of mc/mt, in this case we see that the SM behaves like λ4, and when the fifth
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Figure 2. The evolution of the CKM elements for three different values of the compactification
radius we have used: 4 TeV (dotted red line), 8 TeV (dot-dashed blue line), 20 TeV (dashed
green line); as a function of the scale parameter t. In the left panel is the evolution of the CKM
element |Vcb|, and the right panel is the evolution of CKM element |Vts|.
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Figure 3. In the left panel is the evolution of the Jarlskog rephasing-invariant parameter; the
right panel is the evolution of R23, for three different values of the compactification radius: 4
TeV (dotted red line), 8 TeV (dot-dashed blue line) and 20 TeV (dashed green line); as a function
of the scale parameter t.
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Figure 4. Left panel is the evolution of sin θ23; the right panel is the evolution of sin θ12, for
three different values of the compactification radius: 4 TeV (dotted red line), 8 TeV (dot-dashed
blue line), 20 TeV (dashed green line), as a function of the scale parameter t.

dimension KK-modes become kinematically accessible the mass ratio mc/mt decreases with
increasing energy, and in this case the change is of the order of λ4.

In FIG.2 we plot the evolution of the CKM parameters, in the left panel we plot |Vcb| and in
the right panel |Vts|. We see that once the fifth dimension contributions switch on, one can see
that there are new contributions coming from the fifth dimension. Accordingly the evolution of
the CKM parameters |Vcb| and |Vts| are rapidly increasing, this significant increase is of order of
λ2.



In FIG.3, left panel, we plot the Jarlskog invariant parameter. As we mentioned earlier,
this gives us a good indication of the amount of CP violation in the quark sector. As can be
seen, once the fifth dimension contributions are reached, the value of the Jarlskog invariant
increases sharply until we reach the cutoff. In the right panel we present the evolution of the
renormalisation invariant R23; this quantity describes the relationship between the mixing angles
(sin θ23 and cos θ23) and the mass ratio (mb/ms) as it appears in Eq. (23). This renormalisation
invariant quantity starts to increase rapidly when the fifth dimension contributions switch on.
This rapid increase causes increases in the mixing angles, which is suppressed by the mass ratio
mb/ms; similarly, in FIG.4, in the left panel, we present the evolution of the mixing angle sin θ23,
and in the right panel we plot the evolution of the mixing angle sin θ12. After, the fifth dimension
is switched on, the mixing angles sin θ23 and sin θ12 increase rapidly. However, this increase is
suppressed by |Vcb| and |Vus| respectively, as is shown in Eq. (16) and Eqs (17).

4. Conclusion
In conclusion, in this paper we derived the one-loop RGEs in a five-dimensional gauge-Higgs
unification model for an SU(3) gauge group by assuming that the fermion doublet and the two
singlets are located at the fixed points of the fifth dimension. We test the evolution of the
mass ratios mu/mt, mc/mt, the CKM elements |Vcb|, |Vts|, the Jarlskog rephasing-invariant,
R23 and the evolution of the mixing angle sin θ23 and sin θ12. We observed that when the
fifth dimension KK-modes become kinematically accessible all the previous physical observables
evolution change rapidly.
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