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Introduction

Non-linear field theories may produce classical solutions that have
a spatially localized energy density.

These solutions are called solitons or solitary waves.

They maintain their localization over time.

Technically, solitons should retain shape and velocity after
collisions (otherwise they are solitary waves).

These properties allow for an extended-particle interpretation.

It is relatively straightforward to calculate the classical energy of
these configurations, however vacuum polarization effects may
significantly alter classical predictions.

Calculate the vacuum polarization energy (VPE) of the
kink-antikink potential in the φ4 model.
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VPE and the spectral method

The vacuum polarization energy (VPE):

The leading, i.e. one-loop, quantum correction to the energy
of a static soliton.

Renormalized sum of the shifts of the zero point energies of
the quantum fluctuations due to their interaction with the
background configuration generated by the soliton.

We want to calculate the VPE from scattering data in the
framework of spectral methods.
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VPE and the spectral method

Consider the Lagrangian density with background potential V (ϕ):

L =
1

2
∂µϕ∂

µϕ− V (ϕ) . (1)

∃ a static solution to the field equation, φ0(x), with
fluctuations η(x , t), i.e. ϕ(x , t) = φ0(x) + η(x , t).
The fluctuations η(x , t) = ηω(x)e−iωt are subject to a
relativistic wave-equation

ω2ηω(x) =

[
− d2

dx2
+ U(φ0(x))

]
ηω(x) . (2)

U(φ0(x)) is the potential for the fluctuations obtained by
expanding the full wave-equation about φ0(x) to linear order
in η(x , t).
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VPE and the spectral method

For the fluctuations ηω(x) we have

Evac ∼
1

2

∑
j

(
ωj − ω

(0)
j

)
. (3)

Difference in vacuum energy between the full and free theories.

Energy of an infinite set of harmonic oscillators.

Problems:

The sum is not finite.

The sum is not really a sum, since the system may have a
continuum of scattering states.
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VPE and the spectral method

The background polarizes the quantum fluctuations ηω(x) in two
aspects:

It creates bound states with energies ωj ,

It distorts the density of the scattering states.

To account for both bound states and the continuum of scattering
states, the VPE is given by

Evac =
1

2

b.s.∑
j

ωj +
1

2

∫ ∞
0

dk ω∆ρ(k)

∣∣∣∣
renorm.

(4)

where ω2 = k2 + m2 (with k being the momentum and m the
mass of the fluctuating field) and ρ(k) is the density of states.
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VPE and the spectral method

It can be shown that

∆ρ(k) =
1

π

dδ(k)

dk
. (5)

In one space dimensions there are two scattering channels when
the potential is reflection invariant, the symmetric (p = +) and
antisymmetric (p = −) channel.

This leads to

Evac =
1

2

b.s.∑
j

ωj +
∑
p=±

∫ ∞
0

dk

2π
ω
dδp(k)

dk

∣∣∣∣
renorm.

. (6)
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VPE and the spectral method

Renormalization is accomplished in two steps:

The divergent contributions to the momentum integral in are
identified from the Born series.

They are subtracted from the integral and added back in as
Feynman diagrams.

The divergences of the Feynman diagrams are removed with
the help of standard counterterms whose coefficients are
universal for a fixed renormalization scheme.

For the current problem this procedure is quite simple because
only the first order tadpole diagram is divergent.

This diagram is local and can be fully removed under
renormalization.
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VPE and the spectral method

Levinson’s theorem:

δ+(0) =

(
n+ −

1

2

)
π and δ−(0) = n−π , (7)

where n+ and n− are the number of symmetric and antisymmetric
bound states, with threshold states (k = 0) only contributing 1/2.

Applying Levinson’s theorem and integrating by parts yields

Evac =
1

2

∑
j

(ωj −m)−
∑
p=±

∫ ∞
0

dk

2π

k

ω

[
δp(k)− δ(1)

p (k)
]
, (8)

where δ
(1)
p (k) is the Born approximation to the phase shift in

channel p.
Zander Lee Stellenbosch University

Quantum Corrections to the Kink-Antikink Potential



Introduction VPE and the spectral method Kink-antikink configuration Scattering data Results Conclusion and open problems

Kink-antikink configuration

Lagrangian density of φ4 model:

L =
1

2
∂µφ∂

µφ− λ

4

(
φ2 − m2

2λ

)2

. (9)

Classical static solutions to the Euler-Lagrange equation:

φ0 = ± m√
2λ
, φK(x) =

m√
2λ

tanh
(mx

2

)
= φK̄(−x) . (10)

Static kink solution: connects the two vacuum solutions
between x = ±∞ (particle).
Antikink solution: spatial reflection of kink (antiparticle).

Total (classical) kink energy:

Ecl =

∫ ∞
−∞

dx ε(x) =

∫ ∞
−∞

dx
m4

8λ
sech4

(mx

2

)
=

m3

3λ
. (11)
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Kink-antikink configuration
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b

Figure : (a) A schematic plot of the static kink solution. (b) The energy
density of the kink. It is localized, with a width characterised by 1/m.

Zander Lee Stellenbosch University

Quantum Corrections to the Kink-Antikink Potential



Introduction VPE and the spectral method Kink-antikink configuration Scattering data Results Conclusion and open problems

Kink-antikink configuration

The field configuration that describes a kink and antikink at fixed
separation 2R reads

φR(x) =
m√
2λ

[
tanh

(m
2

(x − R)
)
− tanh

(m
2

(x + R)
)

+ 1
]
.

(12)

Due to the non-linear structure this is not a solution to the
field equation, unless widely separated.

This has the classical contribution to the energy:

Vcl(R) =
2m3

λ

[
Rm +

3

tanh(Rm)
− 2 + 3Rm

tanh2(Rm)
+

2Rm

tanh3(Rm)
− 1

]
.

(13)
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Kink-antikink configuration

To compute the VPE contribution we need to solve the
wave-equation

k2ηω(x) =

[
− d2

dx2
+ u(x)

]
ηω(x) , (14)

where

u(x ,R) = U(φR(x))−m2 = 3λ

[
φR(x)2 − m2

2λ

]
, (15)

is the potential induced by the kink-antikink background.

The VPE has the interpretation of a quantum correction to
the potential for particle-antiparticle interaction.
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Kink-antikink configuration
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Figure : A schematic plot of the potential for the fluctuations induced by
the kink-antikink background, for two different values of the separation
distance R, (a) R = 1

2 (b) R = 1.
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Kink-antikink configuration

x
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b

Figure : A schematic plot of the potential for the fluctuations induced by
the kink-antikink background, for two different values of the separation
distance R, (a) R = 2 (b) R = 4.

Zander Lee Stellenbosch University

Quantum Corrections to the Kink-Antikink Potential



Introduction VPE and the spectral method Kink-antikink configuration Scattering data Results Conclusion and open problems

Kink-antikink configuration

When the kink and antikink are widely separated (R →∞),
each possesses the translational zero mode ω2 = 0.
When reducing R, these two translational modes mix with one
turning negative (imaginary energy eigenvalue).
This must be avoided in order to obtain a well-defined
quantum theory for the fluctuations.

Since the distance R is fixed, no fluctuations in this direction
should be admitted, which induces the constraint∫ ∞

−∞
dx ηω(x)z(x) = 0 , (16)

where

z(x) = N
d

dR
φR(x) with N−2 =

∫ ∞
−∞

dx

(
d

dR
φR(x)

)2

. (17)
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Kink-antikink configuration

This constraint turns the wave-equation into an integro-differential
equation

−η′′ω(x) = k2ηω(x)− u(x)ηω(x) + α z(x) , (18)

where

α =

∫ ∞
−∞

dy
[
z(y)σ(y)− z ′′(y)

]
ηω(y) . (19)

Since z(x) vanishes asymptotically, this equation represents a
well-defined scattering problem from which phase shifts and their
Born approximations can be computed.

Note that the constraint only affects the symmetric (p = +)
channel.
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Kink-antikink configuration

Bound states (antisymmetric channel):

Construct a set of basis states by implementing boundary
conditions on the non-interacting solutions at a large
distance L.

Compute matrix elements of the operator

− d2

dx2
+ U(φR(x)) , (20)

and find the eigenvalues.

The eigenvalues below m2 are the bound state energies
(squared).

Since the bound state wave-functions decay exponentially at
large x , the corresponding energies are not sensitive to the
value of L (for sufficiently large L).
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Kink-antikink configuration

For the symmetric channel with the constraint:

Diagonalize the projector 1− |z〉〈z |.
Decouple the unstable mode from the spectrum.

Diagonalize the operator

− d2

dx2
+ U(φR(x)) , (21)

in the resulting basis.

Note that this always causes a zero mode to appear in the
symmetric channel, since the decoupled mode must be
counted a zero eigenvalue bound state.
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Scattering data

For the contribution from the continuum of scattering states, we
need to calculate the phase shift. In the symmetric channel we
parameterize:

ηω(x) = eνS (x) cos[kx + δS(x)] , (22)

with the two functions being related by (variable phase approach)

cos[kx + δS(x)]
dνS(x)

dx
= sin[kx + δS(x)]

dδS(x)

dx
. (23)

The physical phase shift δ+ is related to δS(x) via

δ+ = lim
x→∞

δS(x) . (24)
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Scattering data

Substituting this into our wave-equation and simplifying yields the
differential equations

dδS(x)

dx
= −1

k
c(x)

[
u(x)c(x)− αz(x)e−νS (x)

]
, (25)

dνS(x)

dx
= −1

k
s(x)

[
u(x)c(x)− αz(x)e−νS (x)

]
, (26)

where α is a Lagrange multiplier and

c(x) = cos[kx + δS(x)], s(x) = sin[kx + δS(x)] , (27)

with the initial conditions νS(0) = 0 and δS(0) = 0 and the
constraint ∫ ∞

0
dx z(x)c(x)eνS (x) = 0 . (28)
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Scattering data

Numerically integrate Evac from kmin to kmax , for each value of k :

Take a guess for the Lagrange multiplier α.

Solve the differential equations for δS(x) and νS(x) using
adaptive-step Runge-Kutta method from xmin to xmax .

Check if the constraint is satisfied:

- If not, use root-finding algorithm to update α.
- If yes, set δ+(k) = δS(xmax) and move on to the next k .

For the antisymmetric channel we derive the differential equation

dδA(x)

dx
= −u(x)

k
sin2(kx + δA(x)) , (29)

and solve it using the same procedure above (without α).
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Results

Figure : Phase shift in the
symmetric (δ+) and antisymmetric
(δ−) channels for R = 0.25 with
m = 2.

bound state R = 0.25

ω
(+)
1 0

ω
(−)
1 1.815

Table : Symmetric (ω
(+)
j ) and

antisymmetric (ω
(−)
j ) bound states,

including the zero mode with
m = 2.
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Results

Figure : Phase shift in the
symmetric (δ+) and antisymmetric
(δ−) channels for R = 0.5 with
m = 2.

bound state R = 0.5

ω
(+)
1 0

ω
(+)
2 1.905

ω
(−)
1 1.350

Table : Symmetric (ω
(+)
j ) and

antisymmetric (ω
(−)
j ) bound states,

including the zero mode with
m = 2.
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Results

Table : Symmetric (ω
(+)
j ) and antisymmetric (ω

(−)
j ) bound states for

various values of the separation distance R with m = 2. For large R, ω
(−)
1

turns into a zero mode and ω
(±)
2 approach the breather mode

√
3m/2.

bound state R = 0.75 R = 1.0 R = 3.0 R = 4.0

ω
(+)
1 0 0 0 0

ω
(+)
2 1.719 1.592 1.723 1.731

ω
(−)
1 0.927 0.606 0.012 0.002

ω
(−)
2 1.999 1.955 1.740 1.733
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Results

Figure : Vvac = Evac − 2Ekink as function of the separation distance R
with m = 2. Also shown is the classical potential Vcl .

Zander Lee Stellenbosch University

Quantum Corrections to the Kink-Antikink Potential



Introduction VPE and the spectral method Kink-antikink configuration Scattering data Results Conclusion and open problems

Conclusion and open problems

We have estimated the one-loop quantum correction to the
kink-antikink potential.

We observe that the quantum correction mitigates the strong
attraction seen in the classical kink-antikink potential.

Our findings are consistent with the VPE being just a
correction to the classical energy.

The quantum correction produces a mild repulsion at
intermediate separation suggesting that these corrections
stabilize a classically unstable configuration.
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Conclusion and open problems

We found that Evac(R = 0) 6= 0, which is unexpected.

We will attempt to resolved this discrepancy by calculating
the contribution from the source J(x), which comes from the
fact that φR(x) is not a static solution of the wave-equation.

There may be both, a direct contribution and an indirect one
as a modification of the constraint may turn out inevitable.

We still need to perform these calculations for the sine-Gordon
model, once the above issues are resolved.
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