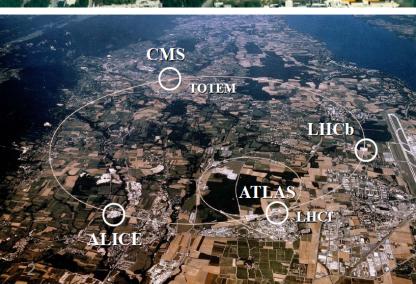
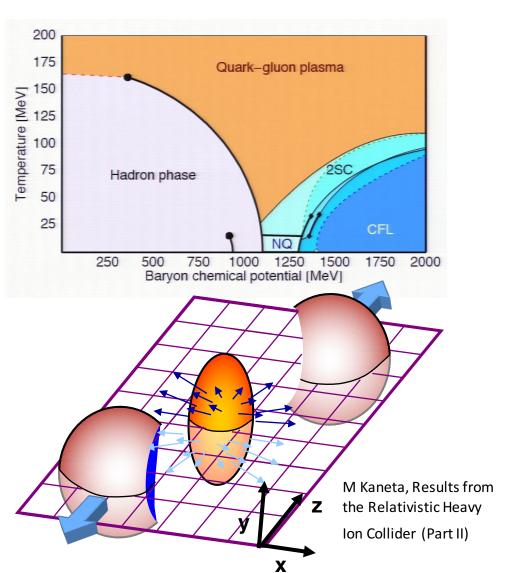
The energy density of a light quark jet using AdS/CFT

Razieh Morad

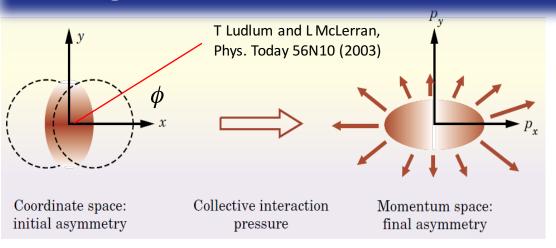
In Collaboration with Dr. W. A. Horowitz

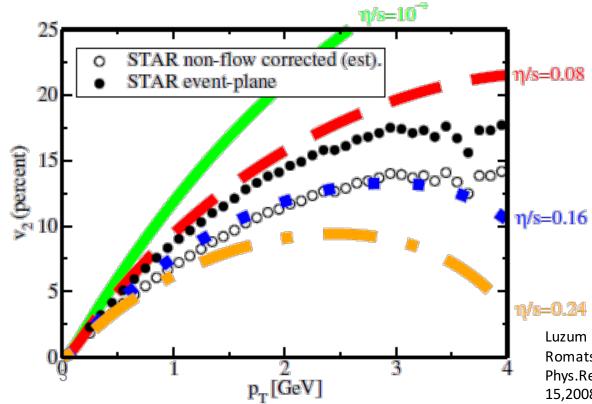
61st Annual Conference of the South African Institute of Physics
University of Cape Town
July 8th, 2016





Quark-Gluon Plasma


Quark-Gluon Plasma is formed in Heavy Ion Collision at RHIC and LHC.



Quark-Gluon Plasma

Elliptic flow

$$\frac{dN}{dp_T}(p_T,\phi) = \frac{dN}{dp_T}(p_T) \left[1 + 2 v_2(p_T) \cos(2\phi) + \dots \right]$$

- 1) Strongly Coupled Matter
- 2) Rapid Thermalization

Luzum and Romatschke, Phys.Rev.C78:0349 15,2008

Quark-Gluon Plasma

Shear viscosity

Hydrodynamics prediction:

$$\frac{\eta}{a}$$
 < 0.1 – 0.2

Teaney (2003)

S

Lattice:

$$\frac{\eta}{s} = 0.13 \pm 0.03$$

Meyer (2007)

Naive pQCD:

$$\frac{\eta}{s} \sim 1$$

N=4 SYM:

$$\frac{\eta}{s} = \frac{1}{4\pi} \approx 0.08$$

Policastro, Son, and Starinets (2001)

AdS/CFT predicts a universal lower bound for the ratio of shear viscosity to entropy.

Kovton, Son and Starinets (2003)

Rapid thermalization:

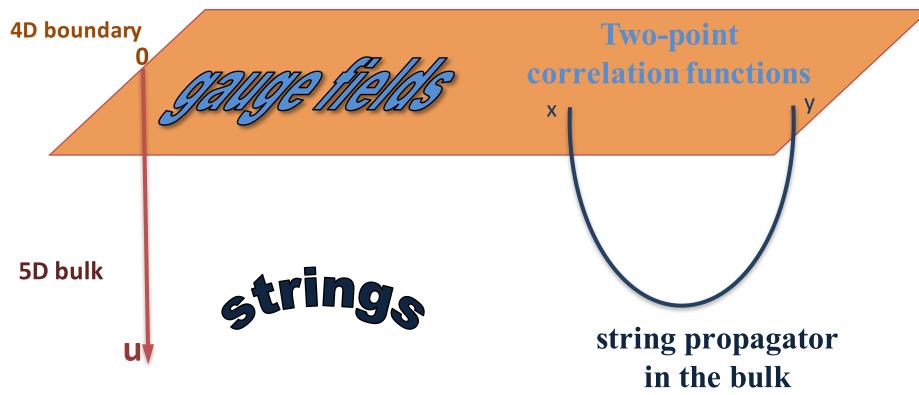
$$\tau_{therm} \sim 0.35$$
 fm

Chesler and Yaffe, PRL 106 (2011) Janik et all (2012),(2014)

AdS/CFT Correspondence

Maldacena Conjecture

Classical gravity on AdS_{d+1}


Strongly coupled d - dimensional CFT which lives on boundary of AdS_{d+1}

Maldacena 98

Duality unproven, but many consistency checks performed.

AdS/CFT Correspondence

$$ds^2 = \frac{dx^\mu d \, x_\mu + du^2}{u^2}$$

u plays a role of inverse energy scale in 4D theory

Light-Quark in string Setup

N = 4 Super-Yang-Mills theory in 4d in large N_C and strong coupling limit λ

A Classical supergravity on the 10d $AdS_5 \times S^5$

Studying the theory at finite temperature

Adding black hole to the geometry: AdS-schwarzchild metric

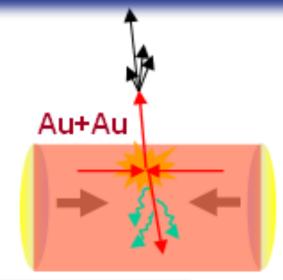
Fundamental quarks in theory

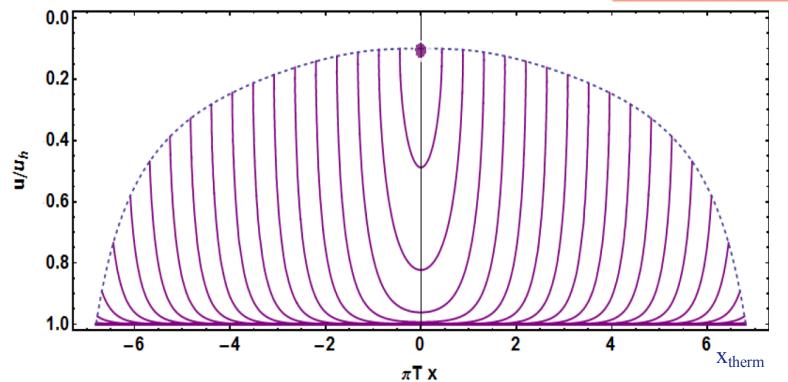
Open strings moving in the 10d geometry

Fundamental quark is dual to a string in the bulk with an endpoint attached to a D7-brane ending at u_m .

For a massive quark at rest: $m_Q = T_0 L^2 \left(\frac{1}{u_h} - \frac{1}{u_m} \right)$

Light Quarks


Falling Strings

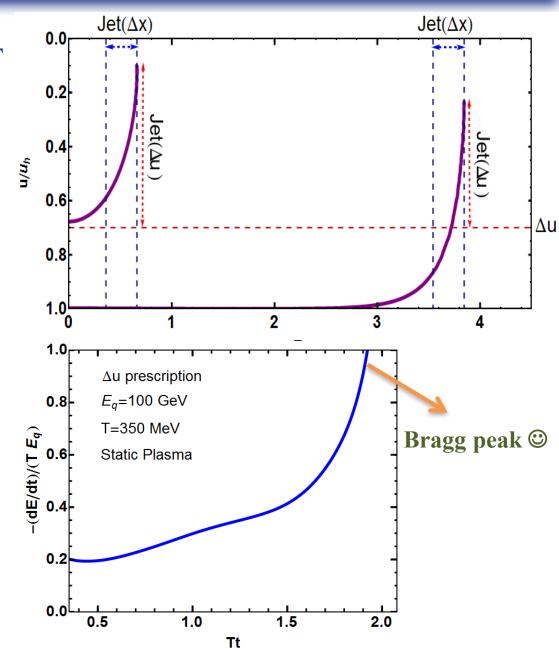

Falling String

$$S_P = -\frac{T_0}{2} \int d^2 \sigma \sqrt{-\eta} \, \eta^{ab} \, \partial_a X^{\mu} \partial_b X^{\nu} \, G_{\mu\nu}$$

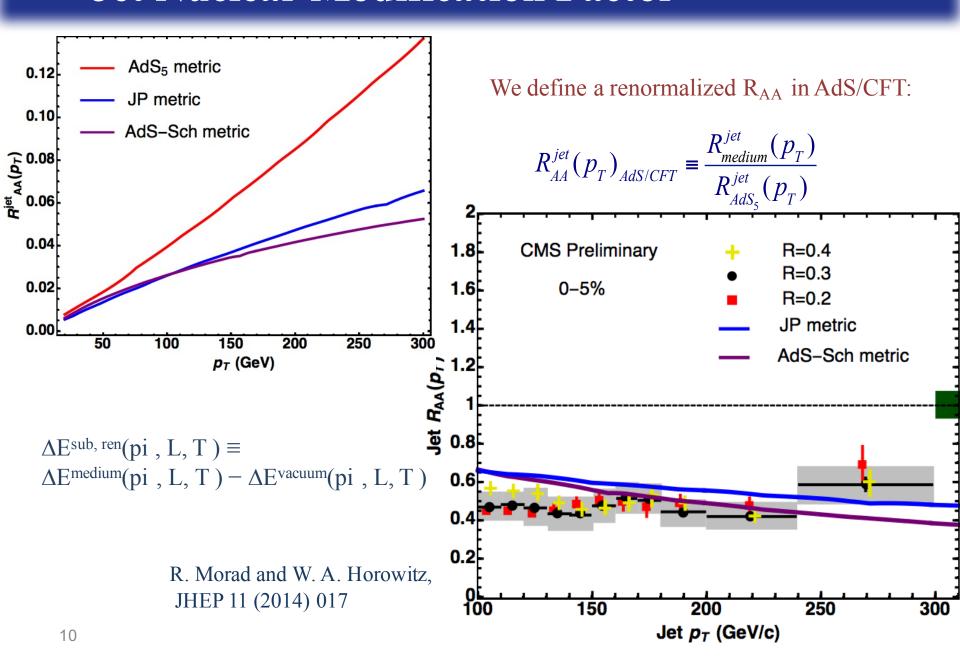
IC: $t(0,\sigma) = t_c, \ x(0,\sigma) = 0, \ u(0,\sigma) = u_c$

BC: $X'^{\mu}(\tau, \sigma^*) = 0$

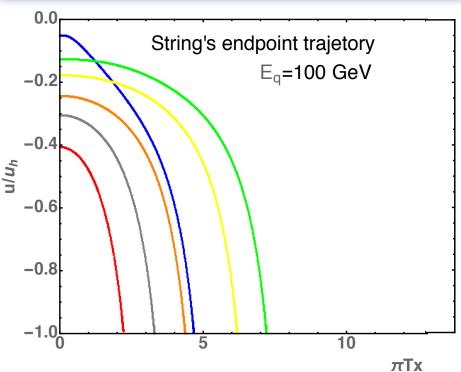
Jet Energy Lost


Prescription of jet in AdS/CFT

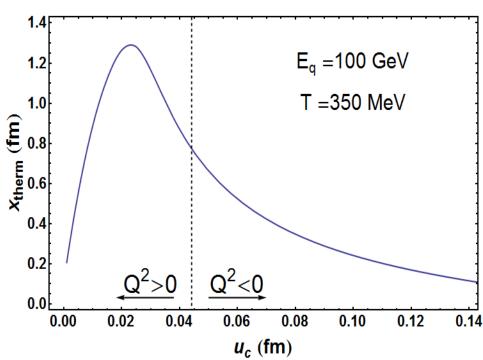
New Jet Prescription based on separation of hard and soft sectors:


Energy Loss:

$$\Pi^{a}_{\mu}(\tau,\sigma) \equiv \frac{1}{\sqrt{-\eta}} \frac{\delta S_{\rm P}}{\delta(\partial_a X^{\mu}(\tau,\sigma))}$$


$$\frac{dp_{\mu}}{dt} = -\sqrt{-\eta} \left(\Pi_{\mu}^{\sigma} - \Pi_{\mu}^{t} \dot{\sigma}_{\kappa} \right)$$

Jet Nuclear Modification Factor

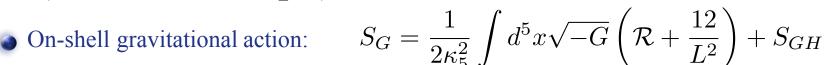

Light-Quark Dynamics

Further progress in describing experimental results will require significant advances in the understanding of string initial conditions.

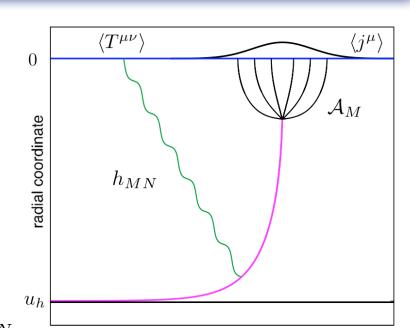
Light quark dynamics highly depends on the initial conditions of the string.

Virtuality of quark:
$$Q^2 \equiv E_q^2 - P_q^2$$

The only way, is calculating the energy-momentum tensor of the string on the boundary and compare with the QCD results.


SYM Stress-Tensor

Presence of string source with the following energy-momentum profile in the bulk perturb the metric:


$$t^{MN} = -\frac{T_0}{\sqrt{-G}}\sqrt{-g}g^{ab}\partial_a X^M\partial_b X^N\delta^3(\boldsymbol{r} - \boldsymbol{r}_s)$$

- Metric perturbation h_{MN} : $G_{MN} = G_{MN}^{(0)} + h_{MN}$
- Linearized Einstein equation for h_{MN}:

$$-D^{2} h_{MN} + 2D^{P} D_{(M} h_{N)P} - D_{M} D_{N} h + \frac{8}{L^{2}} h_{MN} + \left(D^{2} h - D^{P} D^{Q} h_{PQ} - \frac{4}{L^{2}} h\right) G_{MN}^{(0)} = 2\kappa_{5}^{2} t_{MN} ,$$

• SYM energy-momentum tensor:
$$T^{\mu\nu}(x) = \frac{2}{\sqrt{-g}} \frac{\delta S_{\rm G}}{\delta g_{\mu\nu}(x)}$$

Gauge-Invariants

It is possible to construct gauge invariant quantities out of linear combinations of h_{MN} and its derivatives.

- ✓ There are just 5 of them.
- **✓** Their equation of motions are completely decoupled.

The scalar gauge invariant Z, can give us the energy density of the SYM stress tensor on the boundary:

In AdS₅ background:

$$Z'' + AZ' + BZ = S$$

$$A = -\frac{5}{y}$$

$$Z'' + AZ' + BZ = S$$
 $A = -\frac{5}{u}$ $B = \omega^2 - q^2 + \frac{9}{u^2}$

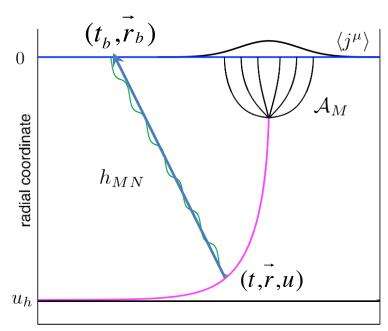
$$S = 8t_{00}^{'} + \frac{4}{3}u(q^{2}\delta^{ij} - 3q^{i}q^{j})t_{ij} + 8i\omega t_{05} + \frac{8}{3u}(q^{2}u^{2} - 6)t_{00} - \frac{8}{3}q^{2}u t_{55} - 8iq^{i}t_{i5}$$

Asymptotic behavior of Z:

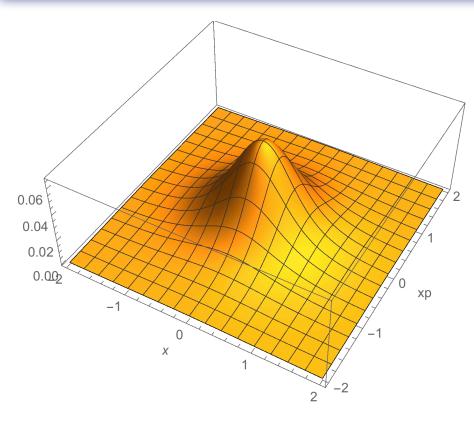
$$Z(u) = Z_{(2)} u^2 + Z_{(3)} u^3 + \cdots ; u \to 0$$

$$\mathcal{E} = -\frac{L^3}{8\kappa_5^2} Z_{(3)}$$

Boundary Energy Density in AdS₅

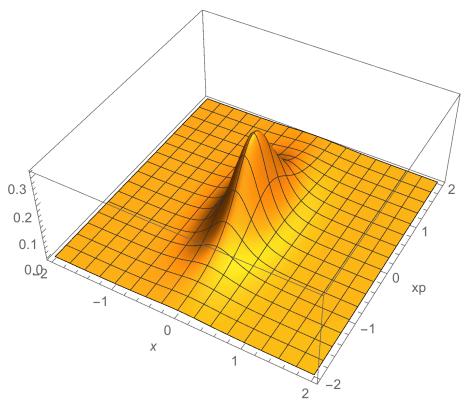

$$\mathcal{E}(t_b, \mathbf{r_b}) = \mathcal{E}_{\mathcal{A}}(t_b, \mathbf{r_b}) + \mathcal{E}_{\mathcal{B}}(t_b, \mathbf{x_b})$$

$$\mathcal{E}_{\mathcal{A}}(t_b, \mathbf{r_b}) = \frac{2L^3}{\pi} \int d^4r \, \frac{du}{u^2} \, \Theta(t_b - t) \, \delta''(W) \left[u(2t_{00} - t_{55}) - (t_b - t)t_{05} + (x_b - x)^i t_{i5} \right]_{t_0}$$

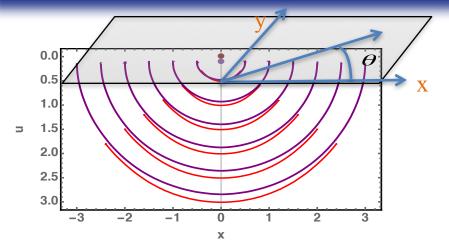

$$\mathcal{E}_{\mathcal{B}}(t_b, \mathbf{r_b}) = \frac{2L^3}{3\pi} \int d^4r \, \frac{du}{u} \, \Theta(t_b - t) \, \delta'''(W) \left[|\mathbf{r_b} - \mathbf{r}|^2 \, (2t_{00} - 2t_{55} + t_{ii}) - 3(x_b - x)^i \, (x_b - x)^j \, t_{ij} \right]$$

$$W = -(t - t_b)^2 + (\vec{r} - r_b)^2 + u^2$$

At time t, the bulk excitation localized at (t, r, u) emits a gravitational wave h_{MN} which propagates through AdS_5 at the respective speed of light up to the measurement point (t_b, r_b) on the boundary.



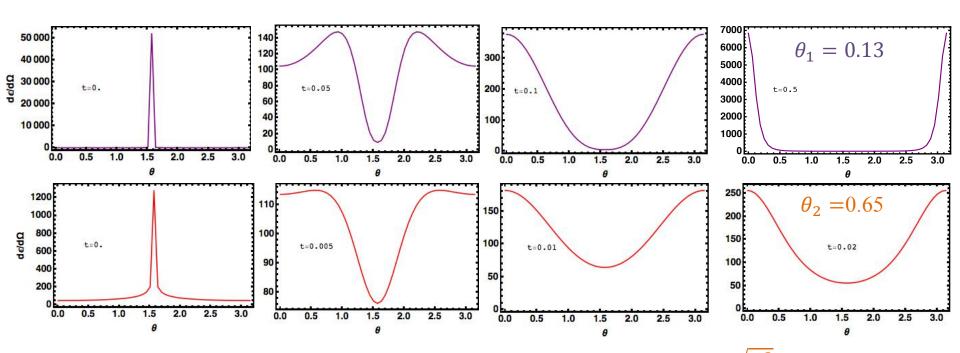
Boundary Energy Density



Heavy quark at rest with finite mass in AdS₅

Heavy quark with finite mass and velocity v=0.9 in x direction in AdS_5

Boundary Jet Energy Density in AdS₅



String 1 created at $u_c=0.1$:

 E_q =100 GeV, Q²=176 GeV²

String 2 created at $u_c=0.01$:

 $E_q = 100 \text{ GeV}, \ Q^2 = 6000 \text{ GeV}^2$

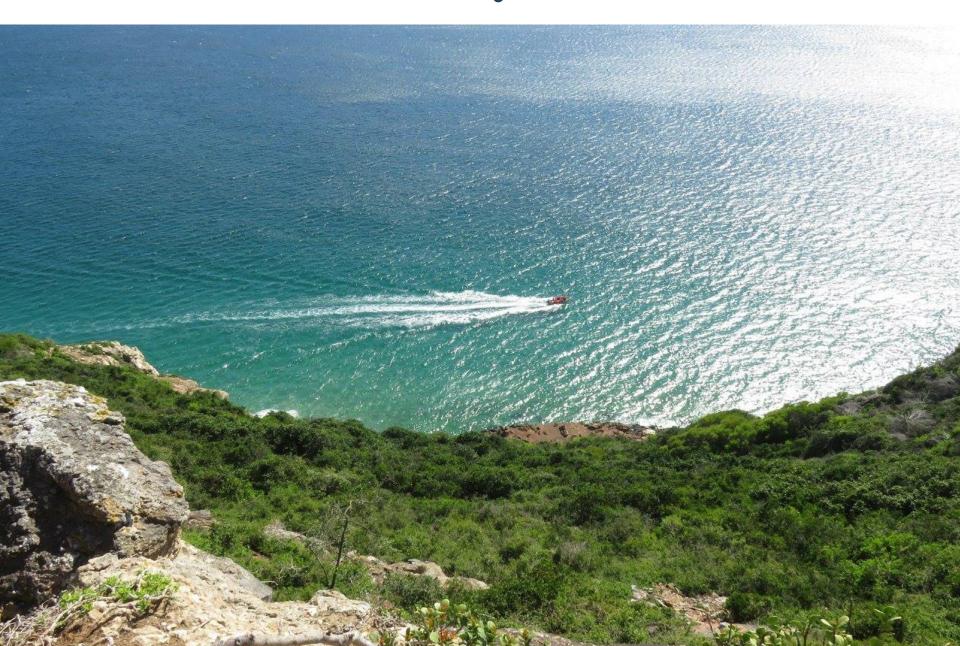
One can define the opening angle of jet: $\theta_j = ArcTan[\frac{\sqrt{Q^2}}{E_a}]$

Current plan:

In AdS-Sch background:

$$Z'' + AZ' + BZ = S$$

P. Chesler et al, hep-th/1001.3880


$$A \equiv -\frac{24 + 4q^{2}u^{2} + 6f + q^{2}u^{2}f - 30f^{2}}{uf(u^{2}q^{2} + 6 - 6f)}, \quad B \equiv \frac{\omega^{2}}{f^{2}} + \frac{q^{2}u^{2}(14 - 5f - q^{2}u^{2}) + 18(4 - f - 3f^{2})}{u^{2}f(q^{2}u^{2} + 6 - 6f)}$$

$$\frac{S}{\kappa_{5}^{2}} \equiv \frac{8}{f}t'_{00} + \frac{4\left(q^{2}u^{2} + 6 - 6f\right)}{3uq^{2}f}(q^{2}\delta^{ij} - 3q^{i}q^{j})t_{ij} - \frac{8q^{2}u}{3}t_{55} - 8iq^{i}t_{i5}$$

$$+ \frac{8i\omega}{f}t_{05} + \frac{8u\left[q^{2}\left(q^{2}u^{2} + 6\right) - f\left(12q^{2} - 9f''\right)\right]}{3f^{2}\left(q^{2}u^{2} - 6f + 6\right)}t_{00}$$

Construct Green's functions G(u, u') out of homogeneous solutions by considering the appropriate boundary conditions at the boundary and at the horizon and convolve with source as

Thank you

