The energy density of a light quark jet using AdS/CFT

Razieh Morad

In Collaboration with Dr. W. A. Horowitz

61 ${ }^{\text {st }}$ Annual Conference of the South African Institute of Physics
University of Cape Town
July $8^{\text {th }}, 2016$

Quark-Gluon Plasma

Quark-Gluon Plasma is formed in Heavy Ion Collision at RHIC and LHC.

Quark-Gluon Plasma

Elliptic flow

$$
\frac{d N}{d p_{T}}\left(p_{T}, \phi\right)=\frac{d N}{d p_{T}}\left(p_{T}\right)\left[1+2 v_{2}\left(p_{T}\right) \cos (2 \phi)+\ldots\right]
$$

Coordinate space: initial asymmetry

Collective interaction pressure

Momentum space: final asymmetry

Quark-Gluon Plasma

Shear viscosity

Hydrodynamics prediction:	$\frac{\eta}{s}<0.1-0.2$	Teaney (2003)
Lattice:	$\frac{\eta}{s}=0.13 \pm 0.03$	Meyer (2007)
Naive pQCD:	$\frac{\eta}{s} \sim 1$	
$\mathrm{~N}=4 \mathrm{SYM}:$	$\frac{\eta}{s}$	$=\frac{1}{4 \pi} \approx 0.08$

AdS/CFT predicts a universal lower bound for the ratio of shear viscosity to entropy.

Rapid thermalization: $\quad \tau_{\text {therm }} \sim 0.35 \mathrm{fm}$
Chesler and Yaffe, PRL 106 (2011) Janik et all (2012),(2014)

AdS/CFT Correspondence

Maldacena Conjecture

Classical gravity on $\mathrm{AdS}_{\mathrm{d}+1}$

Strongly coupled d - dimensional CFT which lives on boundary of AdS $_{\text {d+1 }}$

Maldacena 98

Duality unproven, but many consistency checks performed.

AdS/CFT Correspondence

Anti-de-Sitter space (AdS_{5})

$$
d s^{2}=\frac{d x^{\mu} d x_{\mu}+d u^{2}}{u^{2}}
$$

5D bulk

u
string propagator in the bulk
u plays a role of inverse energy scale in 4D theory

Light-Quark in string Setup

$\mathrm{N}=4$ Super-Yang-Mills theory in 4 d in large N_{C} and strong coupling limit λ

Studying the theory at finite temperature

A Classical supergravity on the $10 \mathrm{~d} A d S_{5} \times S^{5}$

Fundamental quarks in theory

Adding black hole to the geometry: AdS-schwarzchild metric

Open strings moving in the 10d geometry

Fundamental quark is dual to a string in the bulk with an endpoint attached to a D7-brane ending at u_{m}.

For a massive quark at rest: $\quad m_{Q}=T_{0} L^{2}\left(\frac{1}{u_{h}}-\frac{1}{u_{m}}\right)$

Falling String

$S_{P}=-\frac{T_{0}}{2} \int d^{2} \sigma \sqrt{-\eta} \eta^{a b} \partial_{a} X^{\mu} \partial_{b} X^{\nu} G_{\mu \nu}$
IC: $\quad t(0, \sigma)=t_{c}, \quad x(0, \sigma)=0, u(0, \sigma)=u_{c}$
$\mathrm{BC}: \quad X^{\prime \mu}\left(\tau, \sigma^{*}\right)=0$

$\mathrm{Au}+\mathrm{Au}$

-

$$
\rightarrow+\ln \operatorname{lit} \rightarrow
$$

Jet Energy Lost

Prescription of jet in AdS/CFT

New Jet Prescription based on separation of hard and soft sectors:

Energy Loss:
$\Pi_{\mu}^{a}(\tau, \sigma) \equiv \frac{1}{\sqrt{-\eta}} \frac{\delta S_{\mathrm{P}}}{\delta\left(\partial_{a} X^{\mu}(\tau, \sigma)\right)}$
$\frac{d p_{\mu}}{d t}=-\sqrt{-\eta}\left(\Pi_{\mu}^{\sigma}-\Pi_{\mu}^{t} \dot{\sigma}_{\kappa}\right)$

Jet Nuclear Modification Factor

Light-Quark Dynamics

Further progress in describing experimental results will require significant advances in the understanding of string initial conditions.

Light quark dynamics highly depends on the initial conditions of the string.

Virtuality of quark: $\quad Q^{2} \equiv E_{q}^{2}-P_{q}^{2}$

The only way, is calculating the energy-momentum tensor of the string on the boundary and compare with the QCD results.

SYM Stress-Tensor

- Presence of string source with the following energy-momentum profile in the bulk perturb the metric:
$t^{M N}=-\frac{T_{0}}{\sqrt{-G}} \sqrt{-g} g^{a b} \partial_{a} X^{M} \partial_{b} X^{N} \delta^{3}\left(\boldsymbol{r}-\boldsymbol{r}_{s}\right)$
- Metric perturbation $\mathrm{h}_{\mathrm{MN}}: \quad G_{M N}=G_{M N}^{(0)}+h_{M N}$
- Linearized Einstein equation for h_{MN} :
$-D^{2} h_{M N}+2 D^{P} D_{(M} h_{N) P}-D_{M} D_{N} h+\frac{8}{L^{2}} h_{M N}$

$+\left(D^{2} h-D^{P} D^{Q} h_{P Q}-\frac{4}{L^{2}} h\right) G_{M N}^{(0)}=2 \kappa_{5}^{2} t_{M N}$,
On-shell gravitational action: $\quad S_{G}=\frac{1}{2 \kappa_{5}^{2}} \int d^{5} x \sqrt{-G}\left(\mathcal{R}+\frac{12}{L^{2}}\right)+S_{G H}$
- SYM energy-momentum tensor: $T^{\mu \nu}(x)=\frac{2}{\sqrt{-g}} \frac{\delta S_{\mathrm{G}}}{\delta g_{\mu \nu}(x)}$

$T_{\mu \nu}$ has 5 degrees of freedom

Gauge-Invariants

It is possible to construct gauge invariant quantities out of linear combinations of $h_{M N}$ and its derivatives
\checkmark There are just 5 of them.
\checkmark Their equation of motions are completely decoupled.
The scalar gauge invariant Z, can give us the energy density of the SYM stress tensor on the boundary:

In AdS_{5} background:
$Z^{\prime \prime}+A Z^{\prime}+B Z=S \quad A=-\frac{5}{u} \quad B=\omega^{2}-q^{2}+\frac{9}{u^{2}}$
$S=8 t_{00}^{\prime}+\frac{4}{3} u\left(q^{2} \delta^{i j}-3 q^{i} q^{j}\right) t_{i j}+8 i \omega t_{05}+\frac{8}{3 u}\left(q^{2} u^{2}-6\right) t_{00}-\frac{8}{3} q^{2} u t_{55}-8 i q^{i} t_{i 5}$

Asymptotic behavior of Z :

$$
Z(u)=Z_{(2)} u^{2}+Z_{(3)} u^{3}+\cdots \quad ; \quad u \rightarrow 0
$$

Energy density:

$$
\mathcal{E}=-\frac{L^{3}}{8 \kappa_{5}^{2}} Z_{(3)}
$$

Boundary Energy Density in AdS_{5}

Boundary Energy Density

Heavy quark at rest with finite mass in AdS_{5}

Heavy quark with finite mass and velocity $\mathbf{v}=\mathbf{0 . 9}$ in \mathbf{x} direction in AdS_{5}

Boundary Jet Energy Density in AdS_{5}

Current plan:

In AdS-Sch background:

$$
\begin{gathered}
Z^{\prime \prime}+A Z^{\prime}+B Z=S \quad \text { P. Chesler et al, hep-th/1001.3880 } \\
A \equiv-\frac{24+4 q^{2} u^{2}+6 f+q^{2} u^{2} f-30 f^{2}}{u f\left(u^{2} q^{2}+6-6 f\right)}, B \equiv \frac{\omega^{2}}{f^{2}}+\frac{q^{2} u^{2}\left(14-5 f-q^{2} u^{2}\right)+18\left(4-f-3 f^{2}\right)}{u^{2} f\left(q^{2} u^{2}+6-6 f\right)} \\
\frac{S}{\kappa_{5}^{2}} \equiv \frac{8}{f} t_{00}^{\prime}+\frac{4\left(q^{2} u^{2}+6-6 f\right)}{3 u q^{2} f}\left(q^{2} \delta^{i j}-3 q^{i} q^{j}\right) t_{i j}-\frac{8 q^{2} u}{3} t_{55}-8 i q^{i} t_{i 5} \\
+\frac{8 i \omega}{f} t_{05}+\frac{8 u\left[q^{2}\left(q^{2} u^{2}+6\right)-f\left(12 q^{2}-9 f^{\prime \prime}\right)\right]}{3 f^{2}\left(q^{2} u^{2}-6 f+6\right)} t_{00}
\end{gathered}
$$

Construct Green's functions $G(u, u$ ') out of homogeneous solutions by considering the appropriate boundary conditions at the boundary and at the horizon and convolve with source as

$$
\begin{aligned}
& Z(u)=\int_{0}^{u_{h}} d u^{\prime} G\left(u, u^{\prime}\right) S\left(u^{\prime}\right) \longleftrightarrow \varepsilon(\vec{q}, \omega)=-\frac{L^{3}}{8 \kappa_{5}^{2}} Z^{(3)} \\
& E(\vec{r}, t)=\int \frac{d^{4} q}{(2 \pi)^{4}} \varepsilon(\vec{q}, \omega) e^{i Q x}
\end{aligned}
$$

Thank you

