SAIP2016

Contribution ID: 303

Type: Poster Presentation

High energy electron irradiation influence on the Schottky barrier hieght and the Richardson constant on Pd/ZnO Schottky barrier diodes

Tuesday, 5 July 2016 16:10 (1h 50m)

Abstract content
 (Max 300 words)
 dry="http://events.saip.org.za/getFile.py/atarget="_blank">Formatting &
br>Special chars

The influence of high energy electron (HEE) irradiation from Sr-90 radio-nuclide on Pd/ZnO samples has been investigated over the temperature range of 80-350 K. Current-voltage (IV), capacitance-voltage (CV) and deep level transient spectroscopy (DLTS) were used characterize the devices before and after irradiation. For both devices, the IV characteristics were well described by thermionic emission (TE) in the high temperatures but deviated from TE theory at low temperatures. The current flowing through the interface at a bias of 2.0 V from pure TE to Thermionic field emission (TFE) within the depletion region with the free carrier concentration of the devices decreases after HEE irradiation. The modified Richardson constants were determine from the Gaussian distribution of the barrier height across the contacts. New defects appeared after HEE irradiation.

Apply to be
br> considered for a student
 award (Yes / No)?

yes

Level for award
- (Hons, MSc,
- PhD, N/A)?

PhD

Main supervisor (name and email) < br>and his / her institution

danie.auret@up.ac.za

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

No

Please indicate whether
-br>this abstract may be
-published online
-br>(Yes / No)

yes

Primary author: Mr MAYIMELE, Meehleketo Advice (university of Pretoria)

Co-author: Prof. AURET, Danie (University of Pretoria)

Presenter: Mr MAYIMELE, Meehleketo Advice (university of Pretoria)

Session Classification: Poster Session (1)

Track Classification: Track A - Division for Physics of Condensed Matter and Materials