SAIP2016

Contribution ID: 353

Type: Oral Presentation

Boundary Current Response in Ba_{0.34}K_{0.64}Fe₂As<sub>2</sub Single Crystals Probed by Non-Resonant Microwave Absorption.

Tuesday, 5 July 2016 15:20 (20 minutes)

Abstract content
 (Max 300 words)
Formatting &
Special chars

Non-resonant microwave absorption (NRMA) in superconducting materials has become a new experimental technique to probe and understand superconducting materials [1]. For example cuprate superconductors are well studied with this technique [2]. At the same time the technique is also evolving. This technique (NRMA) has been used to study magnetic shielding effects/boundary current in Ba_{0.34}K_{0.64}Fe₂As<su

Apply to be
 considered for a student
 award (Yes / No)?

YES

Level for award
 (Hons, MSc,
 PhD, N/A)?

MSc

Main supervisor (name and email)
and his / her institution

V.S Srinivasu, vallavs@unisa.ac.za, university of south Africa

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

YES

Please indicate whether
this abstract may be
published online
(Yes / No)

YES

Primary author: Ms RAMASHITJA, Tshiwela Caroline (University of South Africa)Presenter: Ms RAMASHITJA, Tshiwela Caroline (University of South Africa)Session Classification: Division for Physics of Condensed Matter and Materials (2)

Track Classification: Track A - Division for Physics of Condensed Matter and Materials