SAIP2016 Contribution ID: 165 Type: Oral Presentation ## **BPS** Geometries Wednesday, 6 July 2016 11:30 (20 minutes) # Abstract content
 (Max 300 words)
 dry-Formatting &
 &class="blank">Formatting &class="blan We study the example of the AdS/CFT correspondence betwee type IIB string theory on spacetimes that are asymptotically AdS₅ \times S⁵ and N = 4 super Yang-Mills Theory. We consider states in the field theory dual to 1/2 and 1/4 BPS string theory backgrounds. The boundary condition for the supergravity solution is determined by a function which satisfies the Laplace equation. For regular geometries, this function must take values $\pm 1/2$ on a certain two dimensional plane. In the dual theory, this plane is identified with a phase space of Fermions by mapping the regions with $\pm 1/2$ to occupied and unoccupied states. This can be visualized as separated white and black regions. The boundary separating these two region can have any shape for 1/2 BPS geometries. For 1/4 BPS geometries, the boundary is constrained by a non-tirival differential equation. ### Apply to be
br> considered for a student
 award (Yes / No)? Yes Level for award
 - (Hons, MSc,
 - PhD, N/A)? PhD ### Main supervisor (name and email)
 sand his / her institution Robert de Mello Koch robert@neo.phys.wits.ac.za University of the witwatersrand Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)? No Please indicate whether

br>this abstract may be
 br>published online

(Yes / No) Yes Primary author: Mr NKUMANE, Lwazi (University of the witwatersrand) Co-authors: Mr GOSSMAN, David (university of the witwatersrand); Ms TRIBELHORN, Laila (University of the witwatersrand); Prof. DE MELLO KOCH, Robert (University of the witwatersrand) **Presenter:** Mr NKUMANE, Lwazi (University of the witwatersrand) **Session Classification:** Theoretical and Computational Physics (1) **Track Classification:** Track G - Theoretical and Computational Physics