Search for new Bosons at the LHC

B. Mellado University of the Witwatersrand

SAIP 2015, UCT, July 4th-8th 2016

Outline

Habemus Novum Boson Search in the high mass di-photon spectrum

Anatomy of the excess

ZZ, WW resonances

hh resonances

Heavy scalar and DM

Habemus novum Boson Phys.Lett. B716 (2012) 1-29 Phys.Lett. B716 (2012) 30-61

On July 4th 2012 reported both experiments reported ~5σ effects

3

The search for heavy bosons in the di-photon invariant mass spectrum

Back in December 2015 the ATLAS and CMS collaborations reported similar excesses in the region of 750 GeV in the di-photon invariant mass spectrum

These excesses have triggered a burst of theoretical papers (over 400)

Major updates coming from experiments expected in August at ICHEP 2016, in Chicago.

Δ

Photons are selected with dedicated Identification and isolation criteria. Spectrum fitted with background-only unbined likelihood fit Results for Spin-2 search yield similar excess in the 13 TeV data

No events observed with M>2 TeV

The CMS experiment classifies the photon pairs according to two categories, denoted as EBEB when both photons are reconstructed in the barrel electromagnetic calorimeter and as EBEE when one of the two photons is observed in the endcap 2

Each category is further subdivided into events recorded with de full magnetic field of 3.8 Testla and when it was switched off.

p-values for search of a narrow scalar with 8 and 13 TeV data Local significance of 3.4σ (1.6 σ global) @750 GeV 9

Kinematics of events in the excess region compatible with background

ZZ and WW resonance searches

Analysis performed for different assumptions of widths

ATLAS-CONF-2016-012

 $\frac{E \text{Vents}}{10^3} / \frac{\text{GeV}}{10^5}$

10¹

1.0

10

10-

10

Data/Pred

Events / GeV 10³

10²

10¹

1.0

10-

10-

10

Data/Pred .0 1

1.0

200

400

600

800

1000

1200

m(*lljj*) [GeV]

Complex analysis that includes btagging and boosted (fat) jets

CMS-PAS-HIG-16-011

Heavy Scalar and Dark Matter

Di-photon candidates are classified according to presence of Missing energy

Prospects for 2016

	July				Aug				Sep				
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	4	11	18	25	1	8	15	22	29	5	12	E 19	26
Tu								MD 2				: 2.5 k taking	
We											TS2	data 1	
Th				MD 1						Jeune G		ğ	
Fr													
Sa										MD 3			
Su				beta* 2.5 km dev.						NO 3			

We are here

	Oct		Nov						Dec				
Wk	40	41	42	43	44	45	46	47	48	49	50	51	52
Мо	3	10	17	24	31	7	14	21	28	5	¥ 12	19	26
Tu	MD 4						lons				Extended	year end	
We						TS3	setup				technic	al stop	
Th								le	on run			Lab closed	
Fr					MD 5				(p-Pb)				
Sa													
Su										Pb MD		Xmas	New Year

Technical Stop

Machine development

Special physics runs - provisional dates

May get ~30 fb⁻¹ this year alone 23

End of run

Stay tuned for massive updates

2016CLICAGO

AUGUST 3-10, 2016

ABSTRACT SUBMISSION THROUGH FEB. 7, 2016

LOCAL ORGANIZING

REN BYRUM, WATIONAL LABORATORY

ED BLUCHER, UNIVERSITY OF CHICAGO

COMMITTEE

RUTH VAN DE WATER,

FERMILAB

KEVIN PITTS, UNIV. OF ILLINOIS, URBANA - CHAMPAIGN

NIKOS VARELAS, UNIVERSITY OF ILLINOIS, CHICAGO

MAYDA VELASCO, MAYDA VELASCO, TUWESTERN UNIVERSITY

CHNOLOGY

AT SHERATON GRAND CHICAGO

ICHEP2016.ORG

38TH INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS **SA well represented with** Z.Vilakazi in the IC, A.Muronga and BM as convenors

Additional Slides

Higgs production at Hadron Colliders and decays

Gluon-gluon fusion

Vector Boson Fusion

Associated Production

Higgs Cross-Sections at LHC

Main Decay Modes

28

In the standard model there is a physical state, a Higgs boson with well defined couplings to weak bosons, fermions and self interactions

Gauge	Self-interaction	Fermion
$HW^{+}_{\mu}W^{-}_{\nu}:(-ig_{\mu\nu})2\frac{m_{W}^{2}}{\nu}$ $HZ_{\mu}Z_{\nu}:(-ig_{\mu\nu})2\frac{m_{Z}^{2}}{\nu}$ $HHW^{+}_{\mu}W^{-}_{\nu}:(-ig_{\mu\nu})2\frac{m_{W}^{2}}{\nu^{2}}$ $HHZ_{\mu}Z_{\nu}:(-ig_{\mu\nu})2\frac{m_{Z}^{2}}{\nu^{2}}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$Har{f}f:(i)rac{m_f}{ u}$

The exploration of the coupling to weak bosons plays now a pivotal role in understanding the nature of the scalar boson observed experimentally. New physics can be hidden in these couplings.

When measuring the Higgs boson transverse momentum certain discrepancies were found with the Standard Model

ATLAS-CONF-2016-012

Variables	Cut Values
Lepton $p_{\rm T}$ (leading, subleading)	>(30 GeV, 20 GeV)
$m_{\ell\ell}$	76–106 GeV
$E_{\mathrm{T}}^{\mathrm{miss}}$	>120 GeV
$\Delta \hat{R}_{\ell\ell}$	<1.8
$\Delta \phi(\vec{p}_{\rm T}^{\ell\ell}, \vec{E}_{\rm T}^{\rm miss})$	>2.7
Fractional $p_{\rm T}$ difference	<0.2
Number of <i>b</i> -jets	0
$\Delta \phi(\vec{E}_{T}^{miss}, jets)$	> 0.4
$p_{\rm T}^{\ell\ell}/m_{\rm T}^{ZZ}$	< 0.7