SAIP2016

Contribution ID: 258

Type: Poster Presentation

Interplay of antiferromagnetic and Kondo effect in Ce₈Pd₂₄Al

Tuesday, 5 July 2016 16:10 (1h 50m)

Abstract content
 (Max 300 words)
Formatting &
Special chars

The suppression of antiferromagnetic (AFM) order and Kondo effect in Ce₈Pd₂₄Al with the dilution of Ce with La is investigated by means of magnetic susceptibility, $\chi(T)$, magnetization, $M(\mu < sub > 0 < / sub > H)$, electrical resistivity, $\rho(T)$, magnetoresistivity, MR, thermoelectric power, S(T), and thermal conductivity, $\lambda(T)$ measurements. X – ray diffraction studies indicate a cubic AuCu₃ – type crystal structure for all compositions on the alloys series (Ce_{1-x}La_x)₈Pd₂₄Al. At high temperature, χ(T) follows the paramagnetic Curie – Weiss behavior with negative paramagnetic Weiss temperatures θ -sub>p</sub> and effective magnetic moment μ -sub>eff</sub> values in close agreement with the value of 2.54 μ _B expected for free Ce³⁺ - ion. The low temperature dc χ (T) data show an AFM anomaly associated with a Néel temperature T_N which decreases almost linearly from 4.2 K for x = 0 to 2.9 K for x = 0.2 alloys. For alloys in the concentration range of $0 \le x \le 0.3$, $\rho(T)$ is characterized by a coherent Kondo lattice scattering with a well-defined p(T) maximum at T_{max} = 9 K to 5.1 K for compositions in the range $0 \le x \le 0.3$, while incoherent single – ion Kondo scattering prevail for the $x \ge 0.4$ alloys. MR measurements on Ce diluted alloys are analyzed based on the calculations by Schlottmann for the Bethe - ansatz in the frame of the Coqblin - Schrieffer model and yields values of the Kondo temperature T_K and the effective moment of the Kondo ion μ _K. The decrease in T_K and T_{max} is described by the compressible Kondo lattice model. S(T) measurements are interpreted within the phenomenological resonance model giving values of the characteristic temperature T_{CEF} associated to crystal – electric field (CEF) effect. λ (T) data increase linearly with temperature from low temperature with T, while the reduced Lorentz number L/L₀ increase upon cooling and exhibit maxima at low temperature which decrease in magnitude with increased La content x.

Apply to be
 considered for a student
 award (Yes / No)?

Yes

Level for award
 (Hons, MSc,
 PhD, N/A)?

PhD

Main supervisor (name and email)
and his / her institution

Moise B. Tchoula Tchokonte; mtchokonte@uwc.ac.za; University of the Western Cape

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

Yes

Please indicate whether
this abstract may be
published online
(Yes / No)

Yes

Primary author: Mr BASHIR, Aiman (University of the Western Cape)

Co-authors: Prof. STRYDOM, Andre Michael (University of Johannesburg); Prof. KACZOROWSKI, Dariusz (Institute of Low Temperature and Structure Research Polish Academy of Sciences); Prof. TCHOULA TCHOKONTE, Moise Bertin (University of the Western Cape)

Presenter: Mr BASHIR, Aiman (University of the Western Cape)

Session Classification: Poster Session (1)

Track Classification: Track A - Division for Physics of Condensed Matter and Materials