

The BIG picture

 Galaxies are the building blocks of the Universe Dark ages First stars First galaxies • Lambda-CDM: Galaxy development hierarchical merging **DIVERSE!** Galaxy clusters

Evidence of mergers?

- Disturbed morphologies (post mergers)
- Tidal features (during mergers)
- Close pairs (about to merge)

Merger activity causes asymmetries

Tracing asymmetry: Optical vs HI

 Asymmetry more frequent in HI than in stars, & amplitude of asymmetry increases with galaxy radius (Rix & Zaritsky, 1998)

HI is a very sensitive probe of galaxy-galaxy interactions

Can we probe mergers using HI asymmetries?

- 'Quantified HI Morphology II: Lopsidedness and Interaction in WHISP Column Density Maps' (Holwerda et al. 2013)
 - Disturbed morphologies/asymmetries are good indicators of recent merger interaction
- Most HI surveys are single dish (galaxies are unresolved!)
- But we do have lots of HI profiles...

Image credit: VLA THINGS, Walter et al. 2008

Can we probe mergers using HI asymmetries?

- 'Quantified HI Morphology II: Lopsidedness and Interaction in WHISP Column Density Maps' (Holwerda et al. 2013)
 - Disturbed morphologies/asymmetries are good indicators of recent merger interaction
- Most HI surveys are single dish (galaxies are unresolved!)

• But we do have lots of HI profiles...

[several 100 (spatially resolved) VS 10⁴ (spectrally resolved)]

- Symmetric double-horn shape for an unperturbed disk
- non-circular motions
 (potentially caused by merger activity) → asymmetry (Haynes et al. 1998)

Asymmetric HI profiles

• ± 50% HI profiles are asymmetric (Richter & Sancisi 1994, Haynes 1998)

Link between asymmetric HI profiles and lopsided HI distributions (Richter & Sancisi, 1994)

Global velocity profile asymmetries are good tracers of the disk mass asymmetry

So maybe we can use HI profiles to trace asymmetries associated with merger activity, and thereby trace mergers!

My project

KEY QUESTION: Can HI profile asymmetries tell us about mergers?

APPROACH: Investigate HI profile asymmetries of galaxies within close pairs

- Define a sample of close pairs
- Quantitatively describe asymmetry
- •Compare with isolated galaxies (are mergers a likely candidate for causing HI profile asymmetries?)

Data

- HI: ALFALFA $\alpha 40$ catalogue (Haynes et al., 2011) (code 1's with spectroscopic OCs in SDSS -6768 galaxies)
- Optical: Sloan Digital Sky Survey DR7 (spectroscopic)

HI-OPT pairs

Pair finding method

- Distance cut (r < 100 kpc)
- Velocity cut ($|\Delta v|$ < 1000 km/s)
- Self-match check
- HI isolation check
 329 pairs
- Visual inspection

238 'pure' pairs

Isolated sample

- 1 companion within 1 MPC & 3000 km/s
- Closest neighbour:

r > 200 kpc and $|\Delta v| > 1500 \text{ km/s}$

Measuring profile asymmetry

$$A_{c} = \frac{Area_{big}}{Area_{small}} = \frac{\int_{v_{low}}^{v_{med}} I}{\int_{v_{med}}^{v_{high}} I}$$

Measuring profile asymmetry

$$A_{c} = \frac{Area_{big}}{Area_{small}} = \frac{\int_{v_{low}}^{v_{med}} I}{\int_{v_{med}}^{v_{high}} I}$$

Measuring profile asymmetry

$$A_{c} = \frac{Area_{big}}{Area_{small}} = \frac{\int_{v_{low}}^{v_{med}} I}{\int_{v_{med}}^{v_{high}} I}$$

• Pure pair sample (238)

• Isolated sample (305)

Preliminary results!

Pairs vs Isolated

 Kolomorogov-Smirnov test

KS statistic:
 D = 0.125
 (p-value = 0.012)

Preliminary results!

Statistical tests

Confusion correction

PAPER 1

Statistical tests

PAPER 1

Confusion correction

Future work

- Investigate/compare alternative techniques for quantitatively describing asymmetry
- Compare with optical properties for the sample galaxies (SDSS data); deeper optical images...
- High resolution radio follow up... (MeerKat is coming!!!)

Interferometric radio data: 3.5' res. for ALFALFA vs ~ 10" res. for MeerKAT

Thank you!

Questions?

Tracing asymmetry: Optical versus HI

The gas asymmetry tells us about interactions on a different time-scale to the stars

Preliminary results

Prelim

Extra slides

Pair finding method

Distance cut (100 kpc)

(Robotham et al. 2012)

- Velocity cut (1000 km/s)
- Self-match check
- Unique pair check

(exclude triples/groups)

HI isolation check

And then?

- MeerKAT is coming, we'll be seeing deeper than ever before, and getting HI
 profiles for galaxies over 2/3 the age of the universe
- Use methods developed in this work to extend studies to higher redshift samples to learn more about galaxy evolution over cosmic time

Preliminary results

- Isolated: sigma = 0.13
- Pairs: sigma = 0.26

- Verify optical counterpart matching
- Confusion correction
- Part 2: Quantify optical morphologies of HI galaxies in close pairs
- Part 3: Multi-wavelength follow up (MeerKAT/VLA, KMTnet)

- Verify optical counterpart matching
- Confusion correction
- Part 2: Quantify optical morphologies of HI galaxies in close pairs
- Part 3: Multi-wavelength follow up (MeerKAT/VLA, KMTnet)

- Verify optical counterpart matching
- Confusion correction
- Part 2: Quantify optical morphologies of HI galaxies in close pairs
- Part 3: Multi-wavelength follow up (MeerKAT/VLA, KMTnet)

- Verify optical counterpart matching
- Confusion correction
- Part 2: Quantify optical morphologies of HI galaxies in close pairs
- Part 3: Multi-wavelength follow up (MeerKAT/VLA, KMTnet)

"So our project has been greenlit. But since we're dogs I don't know what that means."

Deeper optical images:

- Previously unobserved tidal features
- Improve OC matching- Dark galaxies ? (Disney et al. 2016)
 - Why are a significant portion of Espada et al's. isolated galaxies asymmetric? (post mergers? KDCs... Krajnovic 2015)

Figure 4: Distribution of the Espada et al. (2011) asymmetry parameter.

Hubble distance:

$$D \approx v_{\rm r}/H_0$$
 $\frac{v_{\rm r}}{c} \approx \frac{v_0 - v_0}{v_0}$

$$u_0 pprox 1420.4 \ \mathrm{MHz}$$

$$H_0 \approx 72 \; \mathrm{km} \; \mathrm{s}^{-1} \; \mathrm{Mpc}^{-1}$$

 ν : observed line frequency

• HI mass:

$$\left(\frac{M_{\rm H}}{M_{\odot}}\right) \approx 2.36 \times 10^{5} \left(\frac{D}{
m Mpc}\right)^{2} \int \left[\frac{S(v)}{
m Jy}\right] \left(\frac{dv}{
m km~s^{-1}}\right)$$

Doppler broadening:

width: $\Delta v [kms^{-1}]$

→ galaxy rotation

Asymmetry

- "Lopsidedness is ubiquitous and occurs in a variety of settings and tracers."- Jog & Combes, 2009
- Caused by mergers and tidal interactions, possibly also asymmetric accretion of gas from the cosmic web...

Pair finding method

- Distance cut (100 kpc)
- Velocity cut (1000 km/s)
- Self-match check
- HI isolation check 229 Pall
- Visual inspection