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Abstract. We will present a quasi-normal modes (QNMs) calculation for a scalar (spin-0)
field in a Schwarzschild black hole background and comment on how this could be generalised
to QNMs for a Weyl field, as well as fields in a Reisnner-Nordström black hole background. These
are the first steps towards calculating the QNMs for the spin-3/2 field in a Reissner-Nordström
black hole background, which is the ultimate aim of my current research project. We shall make
use of the Wentzel-Kramers-Brilloin (WKB) approximation method to computing the QNMs
for black holes perturbed by fields, working to high orders of approximation. We shall work to
sixth order for the systems described above.

1. Introduction
Black holes can be excited by perturbations, which are due to interactions with fields. The
excitation causes oscillations in the spacetime around the black hole. These oscillations are
exponentially damped and their temporal dependence is equivalent to their energy lose to spatial
infinity, thus the name “quasinormal modes”. The quasinormal frequencies (QNFs) associated
with these modes are complex, with the real part describing how damped the modes are, and
the imaginary part describing the rate at which the modes decay. It has been shown that one
can study the thermodynamics of a black hole through the understanding of QNMs, see Ref.
[1]. In this work we are interested in building up methods to compute the quasinormal modes
of a spin-3/2 field in a Reissner-Nordström background, as an extension to the work done on
the QNMs for a spin-3/2 in an D-dimensional Schwarszchild black hole in [2]. The calculations
for QNMs involve solving a master equation (which is Schrödinger-like) of the type

d2ψ

dx2
+Q(x)ψ = 0 , (1)

which is the radial part of the overall wavefunction describing some field in a certain spacetime
background. The method which can be used to solve this master equation is a semi-analytical
approximation method called the WKB method, which involves the patching of solutions at
some classical turning points. There are other approximation methods that one can use to solve
Eq. (1), such as the Asymptotic Iteration Method (AIM), see Ref [3]. All calculations in this
work are presented in natural units, G = c = h̄ = ke = 1, and adopting the metric signature
ηµν = diag (−1, 1, 1, 1) .



2. Black holes
Black holes are solutions to the Einstein field equations. The first of such solutions was found
by Kar Schwarzschild in 1916 only a year after the publication of general relativity in 1915 by
Albert Einstein. It describes the gravitational field of a spherically symmetric, non-rotating and
chargeless object. Other solutions, describing gravitational fields around spherically symmetric
objects which are either non-rotating and charged (Reissner-Nordström black hole) or rotating
and chargeless (Kerr black hole) or both, followed afterwards. We will only consider two types
of black holes, the Schwartzschild and the Reissner-Norström black holes, given by the metrics

gµν = diag

(
−
(

1− 2M

r

)
,

(
1− 2M

r

)−1

, r2, r2 sin2(φ)

)
, (2)

and

gµν = diag

(
−
(

1− 2M

r
+
Q

r2

)
,

(
1− 2M

r
+
Q

r2

)−1

, r2, r2 sin2(φ)

)
, (3)

respectively. M is the mass of the black hole and Q is the charge of the black hole (in the case
of the Reissner-Nordström black hole).

2.1. Coordinate singularity and tortoise coordinates
When looking at the Schwarzschild metric, one notices that at r = 2M we have a singularity.
This radius is called the Schwarzschild radius and it tells us that there is something wrong with
our choice of coordinate system. This problem can be fixed by shifting to some other coordinate
system, the tortoise coordinates, by the following transformation

dx =
r

r − 2M
dr , (4)

where the line element of the Schwarzschild metric becomes

ds2 =

(
1− 2M

r

)(
−dt2 + dr2

)
+ r2dΩ2 , (5)

with dΩ2 = dθ2+sin2(θ)dφ2. With this coordinate transformation we no longer have a singularity
at r = 2M . The shift to tortoise coordinates makes it easy to handle the equations without
worrying about singularities.

3. WKB approximation method
The motivation for the use of the WKB method is from the structure of the equation that
governs the radial part of the wavefunction, which describes the perturbation of the black hole,
and resembles the one dimensional Schrödinger equation for a particle with some energy scattered
off a potential. The Schrödinger equation of this type is given by

d2ψ

dx2
+ kψ = 0 . (6)

For a Schwarzschild black hole perturbed by a scalar field, the radial part of the wavefunction
is describe by Eq. (6). In these calculations k = ω2 − V (x), where ω are the quasinormal
frequencies and V (x) the potential (which depends on the type of black hole and perturbation).
For the case of a Schwarzschild black hole perturbed by a massive scalar field, the potential is
given by



V (x) =

(
1− 2M

r2

)(
µ2 − l(l − 1)

r2
− 2M

r3

)
. (7)

Detailed calculations of the QNMs for the above potential can be found in Ref. [4] . Since
we can also use the WKB method solve equations of this type, we can confidently use this
approximation method to solve Eq. (6) for any given black hole.

4. Boundary Conditions:
After imposing the tortoise coordinates, we will require that particles at x→ −∞ (event horizon
of a black hole) fall into the black hole and particles at x → ∞ (spatial infinity) will no longer
feel the presence of the black hole. Mathematically, this requirement translates to

V (x) =

{
0, if x→∞
0, if x→ −∞ .

(8)

The conditions on the wavefunction assume the form,

Ψin(x) =

{
e−iωx, if x→ −∞
Ale

−iωx +Ble
−iωx, if x→∞ .

(9)

These boundary conditions are required to solve the Schrödinger-like equation for the radial part
of the wavefunction.

5. Quasinormal Modes
5.1. Scalar field in Schwarzschild background
The equation of motion of a scalar field in a Schwartzschild spacetime background is given by
the Klein-Gordon equation [

1√
−g

∂µ
(√
−ggµν∂ν

)
− µ2

]
Φ(x) = 0 , (10)

where gµν is the inverse of the Schwarzschild metric, gµν , µ is the mass of the incoming particles
and g is the determinant of the metric. Using the separation of variables

Φ(x) = e−iωtY (θ, φ)R(r) , (11)

one can show (and with the use of the tortoise coordinates) that the master radial equation is
given by [5]

d2R

dx2
+

{
ω2 −

(
1− 2M

r2

)(
µ2 − l(l − 1)

r2
− 2M

r3

)}
R = 0 . (12)

Using the WKB approximation method, with the potential V (r) =
(
1− 2M

r2

) (
µ2 − l(l−1)

r2
− 2M

r3

)
we can compute numerical results for the QNFs. The table below shows some of these numerical
values (generated using mathematica) for the fundamental mode (n = 0) and varies values for
the angular quantum number l.



Table 1: Fundamental (n = 0) QNF (ω = ωr−iωi) for massless (µ = 0) scalar field Schwarzschild
black hole background:

WKB AIM
n l Re ω Im ω Re ω Im ω

0 2 0.39798 0.08826 0.5741 0.0963
3 0.61587 0.09227
4 0.82212 0.09392

1 2 0.3521 0.3213 0.5573 0.2928
3 0.4816 0.2753
4 0.6794 0.3104

In the above table we compare some WKB values that we generated and the AIM values
found in [6].

5.2. Weyl field in Reissner-Nordström background
The equation of motion for the Weyl field is just the Dirac equation without the mass term

iγµ∇µΨ(x) = 0 . (13)

The gamma matrices, γµ, live in curved space and are defined, in terms of veirbeins,

γµ = γaeµa (14)

with eµa having one “leg” in flat space and the other in curved space. Vierbeins play the role of
bridging flat space gamma matrices and curved space gamma matrices [7]. The veirbeins can
be calculated from the condition

ηabe
a
µe
b
ν = gµν , (15)

The covariant derivative contains both the electromagnetic (Aµ) and the gravitational (Γµ) gauge
fields since the Reissner-Nordström black hole is charged. Thus, we can write the covariant
derivative as

∇µ ≡ ∂µ + iqAµ + Γµ (16)

with q being the coupling constant, in this case it is just the charge of the incoming Weyl
particles. The Reissner-Nordström black hole background is defined by the metric,

gµν = diag

((
1− 2M

r
+
Q

r2

)
,

(
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r
+
Q
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)−1

, r2, r2 sin2(θ)

)
, (17)

and the choice of our gamma matrices must satisfy the anticommutation relation,

{γµ, γν} = 2gµν . (18)

Unlike the Schwarzschild black hole, the Reissner-Nordström black hole has two event horizons
given by the form, r± = M ±

√
M2 −Q2 . We can use the separation of variables again to solve



Table 2: Fundamental (n = 0) QNF (ω = ωr − iωi) for Weyl field in Reissner-Nordström black
hole background with λ = 1 and q = 0:

WKB
n Q Re ω Im ω

0 0.00 0.365718 0.193755
0.30 0.393582 0.195632
0.45 0.446581 0.191235

the Dirac equation, using Chandrasekhar’s [8] approach, we get the radial equation to assume
the form (

d2

dr2∗
+ ω2

)
Z± = V±Z± , (19)

with

V± =
λ2α

r2λ2σ

(
λ3 ± 1

) [r2λ5σ
α1/2

(1−M)− α1/2λ3σ

(
2rλ2 − r2λ2

r − r+
+ 1

)]
. (20)

Where the parameters in V± are given by α = r2−2Mr+Q2, σ = 1− Qq
(r−r+)ω and λ2 =

(
l + 1

2

)2
.

Below we list the QNFs (computed using mathematica) for this potential.

5.3. Spin-3/2 (gravitino) field in a Reissner-Nordström background
One of the predictions of supersymmetry is the existence of supersymmetric partner for every
elementary particle, called the “sparcticles”. With the postulated spin-2 graviton having a
spin-3/2 (gravitino) particle. This will be the supersymmetric partner of the graviton in a
supergravity theory, and has the equation of motion when free and massless as the Rarita-
Schwinger equation,

γµνρ∇νΨρ = 0 . (21)

Similar to the two cases described above, we can make an attempt at separating the Rarita-
Schwinger equation. To do this, we first have to compute the covariant derivative. This part of
the paper is my current research project. Studying methods employed in [9] one can develop a
similar procedure to compute QNFs (and hence the QNMs) for the spin-3/2 field in a Reissner-
Nordström black hole back ground.

6. Conclusion
Through the separation of variables we managed to solve the Klein-Gordon equation as well as
the Weyl equation in curved spacetime. Separating these equations allowed us to focus on the
radial part of the wavefunction, which is Schrödinger-like, and thus compute the potential felt
by the fields due to the presence of the black hole. Using the WKB approximation method, we
then computed the QNFs for the scalar field (in Schwarzschild background) and the Weyl field
(in the Reissner-Nordström background).

The main problem for my current project is to compute the QNFs for a spin-3/2 in a Reissner-
Nordström black hole background. To build up to this calculation, in this paper we explored how



one would compute these QNFs by first considering the case for a scalar field in a Schwarzschild
background and Weyl field in a Reissner-Nordström background.
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