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Abstract. Within an ensemble density functional theory formulation for a finite chain single
band Hubbard Hamiltonian we define a ”Hartree plus exchange” approximation that can
be solved exactly in a self-consistent framework. In this formulation we exclude a small
”correlation” term. Comparison of the results for a short Hubbard chain with the exact
values show that the discontinuity in the Kohn-Sham potential is reproduced well and that
the approximate total energy is a good approximation of the exact total energy. The results
suggest that it is possible to find a good approximate solution for a Hubbard chain of any length
and opens the way for solving interesting models such as Hubbard defect chains in a numerically
simple and reliable way.

1. Introduction
In the mid 1960’s Kohn with Hohenberg [1] and Sham [2] established the formal basis of Density
Functional theory (DFT), a well known powerful formulation nowadays widely used by chemists
and material scientists. DFT is formally exact, but the exact form of all the density functionals in
the formalism, including the exchange-correlation energy, is not known. In practical applications
the exchange-correlation term is approximated and unfortunately there is no systematic way to
develop approximations to the exact density functionals. This has led to a confusing multitude
of approximations in the literature. Approximations that have been used with success include
1) the venerable Local Density Approximation (LDA) [2–4] which is based on the properties
of the homogeneous electron gas, 2) Generalized Gradient Approximations (GGA) [5, 6] where
the exchange-correlation functional expression includes the gradient of the density, 3) Hybrid
functionals [7–9] which include a contribution from exact exchange. Many other approximations
have been proposed for many-electron systems whose spatial coordinates belong to a continuum.
A systematic examination of the properties of approximations are hampered by the almost
impossible task of finding exact solutions for models of real systems. Lattice DFT [10, 11] is
one of the interesting ways to investigate density functionals. Here the finite chain single band
Hubbard Hamiltonian has been used since it is possible to determine the exact interacting density
and eigenenergies for a range of models. For example, the exact Kohn-Sham (KS) potential for
this model can be studied as a function of electron number, which allows an investigation of
a spatially independent discontinuity of the functional derivative of the exchange-correlation
potential at integer particle numbers.

In Section 2, we summarise some important background of Lattice-DFT functionals combined
with an ensemble DFT formalism necessary to fully explore the properties of density functionals.
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In Section 3 we introduce the approaches we used to probe the Hartree plus exchange
approximation and the consequent KS potential as functions of the number of electrons in
the lattice. We then present results followed by their analysis in Section 4 which leads us to the
conclusion in Section 5.

2. Background
The simplest Hubbard Hamiltonian [12, 13] for a finite chain single band of length l that contains
ne electrons can be written as

Ĥ = t̂+ û+ v̂. (1)

In Eq.(1), t̂ = −t
∑

1≤i,j≤l
j=i±1

∑
σ=↑,↓

c†jσciσ, û = u0
∑
1≤i≤l

n̂i↑ n̂i↓ and v̂ =
∑
1≤i≤l

∑
σ=↑,↓

vin̂iσ are the kinetic,

the spin-correlation and the external potential operators respectively. At zero temperature,
the ground state wavefunction ψ0, solution of the Schrödinger equation Ĥψi = Eiψ

i, helps to

determine the ground state site-density n0i = 〈 ψ0 |
∑
σ

n̂iσ | ψ0 〉 and the ground state energy

E0 = 〈 ψ0 | Ĥ | ψ0 〉. If the ground state energy of a system that exchanges particles with
a particle reservoir satisfies the convexity condition [14–16], E0(ne) − E0(ne − 1) ≤ E0(ne +

1) − E0(ne), it leads to the simple two state ensemble Γα[v] = (1 − α)
∣∣∣ψ0[ne, v]

〉〈
ψ0[ne, v]

∣∣∣ +

α
∣∣∣ψ0[ne + 1, v]

〉〈
ψ0[ne + 1, v]

∣∣∣ where α (1 − α) is the probability of finding the system in the

state ψ0[ne + 1] (ψ0[ne]). For a system in a state with N = ne + α electrons, where ne is an

integer, the expectation value of any observable Ô is 〈O〉 = Tr
{

Γα[v]Ô
}

where Tr is the trace

of the product of the two operators. In the KS framework [2], we map the interacting system

onto a fictitious non-interacting system with Hamiltonian ĤKS = t̂+ v̂KS , with potential vKS ,
unique up to a constant, which reproduces the exact interacting electronic (site-) density of the
interacting ground state. The ground state energy can be partitioned as

E0(N) = Tr {ΓαH}
= TKS + EHX + EC + Tr

{
Γα[vKS ]v̂

}
(2)

where the last expression follows since Γα[vKS ] and Γα[v] yield the same ground state density
by construction. For historical reasons we call EHX the Hartree plus exchange energy term and
EC the correlation energy, while TKS is the kinetic energy of the non-interacting Kohn-Sham
system. In Eq. (2),

TKS = Tr
{

Γα
[
vKS

]
T̂
}

,

EHX = Tr
{

Γα
[
vKS

]
û
}

,

EC = Tr
{

Γα [v]
(
T̂ + û

)}
− Tr

{
Γα
[
vKS

] (
T̂ + û

)}
and the Kohn-Sham potential is

v̂KS = v̂HX + v̂C + v̂

where vHX is the functional derivative of EHX and vC this of EC . The correlation energy EC
is expected to make a small contribution to the total energy as confirmed below and in the
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Hartree plus exchange approximation we set this term to zero with the resultant approximate
Kohn Sham potential

ˆ̃vKS = ˆ̃vHX + v̂. (3)

It is useful to define ẼHXv = ẼHX + Tr
{

Γα[ṽKS ]v̂
}

so that E0 = T̃KS + ẼHXv + ẼC i.e.

ẼC = E0− [T̃KS + ẼHXv]. This definition of ẼC is exact for the exact DFT equations and is an
approximation of the correlation energy in the Hartree plus exchange approximation.

3. Method
For any allowed number of electrons for a finite lattice, fractional or integer, we start by solving
the exact interacting Hubbard Hamiltonian numerically and then we solve the KS equation
self-consistently to obtain the exact KS potential vKS . This gives us the exact results to which
approximations can be compared. Using Eq. (3) it is possible to solve the Hartree plus exchange
approximation within the Kohn-Sham formulation. We first perform an exact diagonalization
of an initial KS Hamiltonian with an approximate potential vKS0 . Using perturbation theory we

compute ∂φ0

∂vKS from which we determine ∂n0

∂vKS and ṽHX0 . Finally we obtain a new KS potential

vKS1 using Eq. (3). This process is repeated until a self-consistent approximate KS potential
ṽKS is obtained. From now on, let us consider a lattice of 4 sites with a flat external potential
v = (1, 1, 1, 1)T . We choose this potential to highlight the site dependence of the exchange-
correlation potential. For this model we are interested on the KS potential for electron number
N in the range 1 ≤ N ≤ 8. Let us set in arbitrary units the hopping term t to be 1 while the
on-site coulomb potential u is set to 2.
All the results discussed in this paper were calculated with code written in Octave [17].

4. Results and analysis
The exact KS potential shows a site independent discontinuity at integer particle numbers
(Figure 1) if we compare the potential as we approach an integer particle number from below
or above. The approximate KS potential (Figure 2) reproduces the shape and the discontinuity
observed for the exact potential. In Figure 3 and Figure 4 we notice a shift of the approximate
potential with respect to the exact one. The Hartree plus exchange potential has the form

vHXi (N) = (1− α)vHXi [ne, v
KS(N)] + αvHXi [ne + 1, vKS(N)] + EHX(ne + 1)− EHX(ne) (4)

Figure 1. Exact KS potential vKS as
a function of particle number for a finite
chain.

Figure 2. Approximate KS potential
ṽKS as a function of particle number for
a finite chain.
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where ne is an integer and ne ≤ N ≤ ne + 1. The first two terms describe the shape of the
potential and the last two terms are particle number dependent site independent constants.
These constants change when N passes through an integer and give rise to a site independent
discontinuity in the potential at integer particle numbers.

Figure 3. 3D plot of the exact and the
approximate KS potentials.

Figure 4. 2D plot of the exact and the
approximate KS potentials.

The maximum percentage error between the exact and approximate kinetic energies is less
than 0.26% while for the Hartree plus exchange energy it is 1.09%. This is interesting since
it reveals the similarity between φ0 and φ̃0, the exact and approximate KS ground state
wavefunctions. Figure 5 shows the maximum and minimum, over all the sites, percentage error
in the ground state density. The highest percentage error is 3.12%. The difference between the
curves in Figure 6 gives an indication of the size of EC . The correlation energy decreases at
high filling while it reaches its maximum around a filling of 3. The overall behaviour shows that

Figure 5. Maximum and minimum
density percentage error.

Figure 6. Correlation energy.

the correlation energy makes a relatively small contribution to the total energy of the system.

5. Conclusion and Outlook
We have performed a self-consistent calculation of the Hartree plus exchange approximation,
a new DFT approximation applied to the Hubbard model. We found that the approximate
KS potential has a similar shape and discontinuity at integer particle numbers when compared
to exact results. The correlation energy, estimated by the difference between the exact and
approximate total energies (Figure 6) makes a small contribution to the total energy. From
the similarity between the exact and approximate electronic densities, we confirm that the
approximate KS potential has a shape which closely follows that exact potential. Future work
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includes an attempt to include correlations by using a Jastrow factor to map the KS wave
function onto the interacting wave function.

Acknowledgment
The first author acknowledges a Deutscher Akademischer Austauschdienst (DAAD) bursary.

References
[1] Hohenberg P and Kohn W 1964 Phys. Rev. 136(3B) B864–B871
[2] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[3] von Barth U and Hedin L 1972 Journal of Physics C: Solid State Physics 5 1629
[4] Rajagopal A K and Callaway J 1973 Phys. Rev. B 7(5) 1912–1919
[5] Langreth D C and Perdew J P 1980 Phys. Rev. B 21(12) 5469–5493
[6] Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54(23) 16533–16539
[7] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37(2) 785–789
[8] Becke A D 1993 The Journal of chemical physics 98 5648–5652
[9] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77(18) 3865–3868

[10] Schönhammer K, Gunnarsson O and Noack R 1995 Phys. Rev. B 52 2504
[11] Schonhammer K and Gunnarsson O 1987 Journal of Physics C: Solid State Physics 20 3675
[12] Hubbard J 1963 Proceedings of the royal society of london a: mathematical, physical and engineering sciences

vol 276 (The Royal Society) pp 238–257
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