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Abstract. In this paper we explore the dependency of pulsar population structures (seen in
Ṗ -P diagram) on the measurable characteristics of pulsars. We implement graph kernels for this
investigation and it forms part of structure mining which is a domain of learning on structured
data objects in machine learning. Among others, we implement one of the most powerful graph
kernels that is based on random walks, and has been successfully applied to data mining projects
in the field of astronomy. With instruments such as the SKA coming online in the near future,
the quest continues to search for relationships between the different pulsar populations.

1. Introduction
Pulsars can be considered as stable cosmic clocks that serve the purpose of testing fundamental
astrophysical theories and advancing computing technology [1]. However, the model describing
the evolutionary path of pulsars on the Ṗ -P diagram is incomplete and continuously undergoes
upgrades in both complexity and completeness. The Ṗ -P diagram describes the evolution of
pulsars in the parameter space described by their spin-period (P ), spin-down rate (Ṗ ), magnetic
field (B) and characteristic spin-down age (τc), see Figure 1. The Ṗ -P diagram is mostly
populated by normal pulsars from where they evolve beyond the graveyard line to be reborn as
isolated or binary millisecond pulsar systems (recycled pulsars).

The Ṗ -P diagram is not just being populated via radio observations, but due to the fact that
pulsars produce pulsed-emission across a large part of the electromagnetic spectrum, including
optical, X ray and gamma ray, we can gather a wealth of information to try and understand the
evolutionary path of pulsars on the Ṗ -P diagram and clustering can accelerate this aim.

Graph clustering techniques are being used in machine learning and social network
classification [3]. Specific graph kernels are also being used in photon event tracking seen in the
latest Pass-8 Fermi data (http://fermi.gsfc.nasa.gov/ssc/data/). The new technique ultimately
uses the three dimensional calorimeter readout and implements a Minimum Spanning Tree
(MST) construction to minimize ghost signals and improve the event reconstruction process
at GeV levels [4]. In earlier work, [5] proposed using the Minimum Spanning Tree algorithm
to classify sources in gamma-ray bi-dimensional images where a photon’s (or events) celestial
coordinates represent a node in the graph and the edge is weighted by the angular distance
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Figure 1. Ṗ -P diagram illustrating the placement of isolated neutron star classes according to
their characteristics, adopted from [2].

between the nodes. They applied this algorithm successfully to EGRET data of the Virgo field
and detected several sources.

It needs to be stressed that graph kernels are highly application specific, i.e. when considering
clustering applications on data we can use a specific kernel called the graph clustering kernel.
In the next section we investigate the mechanism of graph clustering, after which we consider
the application of graph clustering on the Ṗ -P diagram via unsupervised machine learning.

2. Machine learning
There are two types of machine learning supervised and non-supervised. There are two main
trends in machine learning. The first is the classification of objects with respect to a certain
characteristic that they might or might not possess. Here we would start with a set of objects
with predetermined outputs, i.e. a set of objects that are already classified in terms of either
having a certain property, or not. The machine then uses this information, compares these
objects and ’learns’ what it is that makes them fall into one category or the other in terms of
their similarity. The idea is to classify any new object according to what has been learned. The
ultimate aim for classification is therefore prediction. The second is used for data that does not
have clear-cut classifications, or perhaps we do not know what it is that we want to search for
in terms of a classification. This then leads to clustering, which is simply grouping together
elements that seem to demonstrate similar characteristics, without having to go into too much
detail of what those characteristics are. The aim here is therefore description.

2.1. Graph kernels
We briefly define a graph and the concepts necessary to define some of the existing graph kernels.
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Figure 2. A graph G with adjacency matrix A in Equation 1.

A finite graph G consists of a set of vertices V (G) = {v1, v2, . . . , vn} with possible edges
between them. The number of vertices in the graph is referred to as the order of the graph,
in this case n. An edge is denoted by e = vivj , meaning the link between vertices vi and vj .
The set of edges of the graph is denoted by E(G). We consider simple graphs with no loops (an
edge from a vertex to itself) or multiple edges between vertices. If two vertices are joined by an
edge, we refer to them as being adjacent. If two edges meet at a common vertex, they are also
referred to as being adjacent. An edge meeting a vertex is incident to that vertex.

A walk in the graph refers to movement across the graph, starting at a vertex and moving
along edges and across other vertices allowing for edges and vertices to be visited more than
once. The length of the walk is simply the number of edges traversed. A path is a walk where no
edges or vertices are visited more than once, and a cycle is a closed path, i.e. its initial vertex
is also its end vertex.

We can describe the graph G by making use of an adjacency matrix A, which is an n × n
matrix consisting of zeros and ones, depending on whether or not two vertices are adjacent. We
therefore have the ij-th entry given as

[A]ij =

{
1 if vivj ∈ E(G),
0 if vivj ̸∈ E(G),

where 1 ≤ i, j ≤ n.
Consider the graph G in Figure 2. For simplicity the vertices v1, v2, . . . , v5 have been labeled

using only values 1, 2, . . . , 5. The adjacency matrix A of G is

A =


0 1 0 0 0
1 0 1 1 0
0 1 0 1 1
0 1 1 0 1
0 0 1 1 0

 . (1)

The adjacency matrix of a graph contains valuable information, especially if we want to
compare two graphs. The sum of the elements in each row or column gives that particular
vertex’s degree, i.e. its amount of adjacent vertices or neighbours. Also, the powers of the
adjacency matrix, say A4, will give us the number of walks of length 4 in the graph, this can be
found for each entry [A]ij , that is, from vertex vi to vertex vj [6]. This concept is often used in
what is called walk-based kernels, together with the idea of a direct product between graphs. To
’walk’ on a direct product graph is therefore the same as walking on both graphs simultaneously
[7–9]. An example of a direct product between graphs is given in Figure 3.

Graph-with-graph comparisons tend to fall under graph classification problems, while within-
graph similarities are more used to cluster graphs.

2.2. Clustering
In terms of clustering or comparing vertices within a graph, we can make use of minimum
spanning trees (MST), shared nearest neighbour (SNN), betweenness centrality, highly connected
subgraphs, maximal clique enumeration and the kernel k-means, to name but a few.
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Figure 3. An example of a direct product between two graphs G and H. If the graphs G and
H have vertex sets V (G) and V (H), respectively, then the direct product graph of G and H has
the vertex set V (G)× V (H), namely the set of ordered pairs consisting of vertices from G and
H. Two vertices (u, u′) and (v, v′) in G×H are adjacent if and only if u is adjacent to v in the
graph G and u′ is adjacent to v′ in the graph H.
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Figure 4. An example of graph clustering done on selected pulsars with respect to their
dispersion measures. The lengths of the edges are not taken into consideration since they only
represent connections between vertices.

In Figure 4 we have made use of a simple graph clustering based on the dispersion measure
of each pulsar. A input threshold µ is specified whereby we form the graph structure. For this
specific graph we choose µ = 10 and vertices (pulsars) are adjacent if the difference between
their dispersion measures are less than or equal to µ. On this graph we can then choose our
method of clustering, depending on the similarities that we want to highlight. We now briefly
discuss some of the methods of graph clustering.

A minimum spanning tree can be constructed from any connected weighted graph. A weighted
graph is a graph where the edges have been assigned a numerical value which is referred to as
its weight. A tree is a connected graph that contains no cycles. A spanning tree of a graph G
is a subgraph of G consisting of all vertices of G. We construct a minimum spanning tree as
follows. After choosing any vertex v to begin with, we use Prim’s algorithm (see also Kruskal’s
algorithm) and we construct the tree T by using an incident edge that satisfies

(i) it has the lowest weight,

(ii) it has only 1 incidence with T .

We repeat this process until we have a tree T that contains all the vertices of the original graph,
hence spanning. In order to cluster the graph, we start eliminating the maximum weighted edges
from T . Since the tree T is a minimum spanning tree, the removal of any edge will result in a
disconnected graph, the components of which would form the clusters.

Our aim is to make use of one or more of the existing clustering methods to investigate
clustering of pulsars on the Ṗ -P diagram. The main task will be to structure our data effectively
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Figure 5. The pulsars in Table 1 plotted against period and period derivative.

in such a manner that the clustering methods could pick up more than just the standard clusters.

3. Application to Ṗ -P diagram
To illustrate one of the most basic clustering methods using graph theory, we shall make use
of eleven chosen pulsars and cluster them according to their respective distances on the Ṗ -P
diagram. The selection is obviously biased, but sufficient to test the algorithm.

We form a complete graph of 11 vertices, that is, all vertices are adjacent to each other.
Next, we assign weights to each edge in the graph according to the physical distances between
its incident vertices (pulsars) on the Ṗ -P diagram. We make use of a minimum spanning tree
to cluster these pulsars. The pulsars that we have made use of can be found in Table 1. Their
positions are plotted in Figure 5.

Now we construct a minimum spanning tree by choosing a vertex and adding edges according
to the algorithm mentioned earlier. The spanning tree is shown in Figure 6a (bold edges).

For us to cluster these pulsars according to the spanning tree, we simply remove the heaviest
weighted edges from the tree. For every edge we remove, we create a new clustering. If we remove
the two heaviest edges from this specific tree, we find the clusters in Figure 6b, corresponding
to our Ṗ -P diagram in Figure 5.

Table 1. Pulsars and their Ṗ -P coordinates used in our minimal working example.

PSR P Pdot
J2214+3000 0.003119 1.4×10−20

J1614-2230 0.003151 9.62×10−21

J0751+1807 0.003479 7.79×10−21

J1745+1017 0.002632 2.73×10−21

J1640+2224 0.003163 2.83×10−21

J1412+7922 0.059198 4×10−19

J1614-5048 0.231694 4.95×10−13

J1301-6305 0.184528 2.67×10−13

J1341-6220 0.19334 2.53×10−13

J1702-4310 0.240524 2.24×10−13

J1413-6141 0.285625 3.33×10−13
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(a) The spanning tree constructed from Table 1. (b) The spanning tree clusters formed

Figure 6. Spanning tree construction and clustering of a sample of pulsars

4. Discussion and Conclusions
In this paper we illustrated the usefulness and the adaptability of the graph cluster algorithm
within the Ṗ -P diagram by using pulsars with unique characteristics and clustered them
accordingly. The MST results are in agreement with the clustering seen in Figure 5. The choice
of threshold is problem specific. Optimizing the threshold can be done by several iterations using
different threshold values. If the threshold is taken to high, the algorithm will simply allocate
a cluster to each data point. For future work we are planning to cluster the entire up-to-date
Ṗ -P diagram using a well optimized clustering code.

Acknowledgments
The financial assistance of the South African SKA Project (www.ska.ac.za), and the National
Research Foundation of South Africa.

References
[1] Lorimer D R 2005 Handbook of pulsar astronomy (Cambridge, UK New York: Cambridge

University Press) ISBN 978-0-521-82823-9

[2] Turolla R, Zane S and Watts A L 2015 Reports on Progress in Physics 78 116901 (Preprint
1507.02924)

[3] Schaeffer S E 2007 Computer Science Review 1 27 – 64 ISSN 1574-0137

[4] Atwood W et al. 2013 ArXiv e-prints (Preprint 1303.3514)

[5] Campana R et al. 2008 Monthly Notices of the Royal Astronomical Society 383 1166–1174
(Preprint 0710.3691)

[6] Samatova N F et al. 2013 Practical Graph Mining with R (Chapman & Hall/CRC) ISBN
143986084X, 9781439860847
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