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Abstract. High Energy Particle Physics collider experiments at the Relativistic Heavy Ion
Collider (RHIC) in the USA and the Large Hadron Collider (LHC) in Geneva, Switzerland, are
probing the most fundamental properties of matter by accelerating a range of particles, from
protons to Lead nuclei, to relativistic speeds and causing them to collide. The decay products of
these violent collisions can be studied in detail and have revealed that a new state of matter in
which the constituents of nucleons, quarks and gluons, exist in a deconfined state, creating what
appears to be a perfect fluid called the Quark Gluon Plasma (QGP). The QGP only exists for
a few femto seconds and is therefore extremely difficult to characterize. The manner in which
a highly energetic particle loses energy as it traverses the QGP has proven to be an effective
probe of the QGP, but recent results in smaller colliding systems such as proton-lead (pPb) have
brought into question our understanding of perturbative Quantum Chromodynamical (pQCD)
descriptions of energy loss, particularly in small systems of QGP. We present a short separation
distance correction to the well-known (static scattering centre) DGLV (Djordjevic, Gyulassy,
Levai, Vitev) pQCD energy loss calculation, revealing a number of shortcomings and problematic
assumptions. We also investigate the feasibility of a similar small system correction in the
(dynamical scattering centre) thermal field theory formalism.

1. Introduction
For decades now, particle physicists have explored the fundamental properties of the universe by
colliding various nucleii at ever increasing energies in order to probe their constituent particles
- quarks and gluons. In recent years, evidence has arisen of the production of a new state of
matter, the Quark - Gluon Plasma (QGP), in which the quarks contained within nucleons and
other hadrons become deconfined [1]. The QGP offers unique insight into the structure of the
most fundamental building blocks of matter as well as an opportunity to study the physics of
many body non-abelian gauge theories.

High momentum particles produced along with the QGP can be used as tomographic probes
in a phenomenon known as jet-quenching, in which high-momentum particles lose energy as they
traverse the QGP. The physics of jet-quenching is complex, but the same phenomenon of energy
loss affects all the particles of the QGP, resulting in a reduction of the cross section of charged
hadrons seen in nucleus-nucleus (AA) collisions as compared to proton-proton (pp) collisions
(if scaled appropriately). Such studies have met with great success in AA collisions, leading to
the rise of a number of perturbative quantum chromodynamical (pQCD) energy loss formalisms
that have evolved to provide a very detailed description of the energy-loss mechanisms [2, 3, 4, 5]
in the QGP.
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However, new analyses of experimental data [6, 7, 8, 9, 10, 11] have shown that there
is evidence for collective behaviour even in small colliding systems previously thought to be
too small to create a QGP. If a QGP does exist in these smaller colliding systems, a clear
understanding of the energy loss mechanisms in small systems is of crucial importance, because
current energy loss models rely heavily on the assumption that the system is large compared to
the debye screened length of the scattering centres. Mathematically, relaxing the assumption
that the system is large in the GLV (Gyulassy, Levai, Vitev) formalism amounts to relaxing the
assumption that the distance between scattering and radiation is large compared to the inverse
debye mass. That is, the present calculation is an all separation distance generalization of the
DGLV (Djordjevic, GLV) [12] energy loss for a massive quark traversing a static medium.

The large separation distance assumption led to a mathematical simplification through the
exponential suppression of certain terms at the amplitude level. We present here the energy
loss formula obtained by retaining terms that are exponentially suppressed due to 1/µD � ∆z.
Alarmingly, upon numerical evaluation of the energy loss formula, we find that the correction
term dominates at high (∼ 100 GeV) parton energies.

2. Setup
For the present calculation we follow precisely the setup of the DGLV calulation [12]. The details
of the current calculation can be found in [13], but will not be discussed at length. For clarity,
we treat the transverse momentum eikonal parton produced at an initial point (t0, z0,x0) inside
a finite QGP, where we have used p to mean transverse 2D vectors, ~p = (pz,p) for 3D vectors
and p = (p0, ~p) = [p0 + pz, p0 − pz,p] for four vectors in Minkowski and light cone coordinates
respectively. As in the DGLV calculation, we consider the target to be a Gyulassy-Wang Debye
screened potential [14] with Fourier and color structure given by

Vn = V (~qn)e−i~qn·~xn

= 2πδ(q0)v(qn, q
z
n)e−i~qn·~xnTan(R)⊗ Tan(n). (1)

The color exchanges are handled using the applicable SU(Nc) generator Ta(n) in the dn
dimensional representation of the target or Ta(R) in the dR dimensional representation of the
pT parent parton.

In light cone coordinates the momenta of the emitted gluon, the final pT parton, and the
exchanged medium Debye quasiparticle are

k =

[
xP+,

m2
g + k2

xP+
,k

]
,

p =

[
(1− x)P+,

M2 + k2

(1− x)P+
,−k

]
,

q = [q+, q−,q], (2)

where the initially produced pT particle of mass M has large momentum E+ = P+ = 2E and
negligible other momentum components. Notice that we include the Ter-Mikayelian plasmon
effect with an effective emitted gluon mass mg [12, 15]. See Fig. 1 for a visualization of these
momenta.

A shorthand for energy ratios will prove useful notationally. Following [12] we define
ω ≈ xE+/2 = xP+/2, ω0 ≡ k2/2ω, ωi ≡ (k − qi)

2/2ω, ω(ij) ≡ (k − qi − qj)
2/2ω, and

ω̃m ≡
(
m2
g +M2x2

)
/2ω.

We will also make the following assumptions: 1) the eikonal, or high energy, approximation,
for which E+ is the largest energy scale of the problem; 2) the soft (radiation) approximation
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x � 1; 3) collinearity, k+ � k−; 4) that the impact parameter varies over a large transverse
area; and, most crucially for this letter, 5) the large formation time assumption ωi � µi, where
µ2
i ≡ µ2 + q2

i .
Note that the above approximations, in addition to allowing us to systematically drop terms

that are small, permit us to 1) (eikonal) ignore the spin of the pT parton; 2) (soft) assume the
source current for the parent parton varies slowly with momentum J(p−q+k) ≈ J(p+k) ≈ J(p);
3) (collinearity) complete a separation of energy scales

E+ � k+ � k− ≡ ω0 ∼ ω(i...j) �
(p + k)2

P+
; (3)

and 4) take the ensemble average over the phase factors, which become 〈e−i(q−q′)·b〉 =
(2π)2

A⊥
δ2(q− q′).

In the original DGLV calculations [12], the large formation time played only a minor role.
However, when considering short separation distances between the scattering centers, the large
formation time assumption naturally increases in importance.

With the above approximations, we reevaluated the 10 diagrams contributing to the N = 1 in
opacity energy loss amplitude [12] without the additional simplification of the large separation
distance ∆z � 1/µ assumption.

~q1, a1

k, c

pz0 z1

z

M1,1,0

~q2, a2

k, c

pz0 z1 z2

z

M c
2,2,0

~q1, a1

Figure 1: M1,1,0 (left hand panel) and M c
2,2,0 (right hand panel) are the only two diagrams that

have non-zero short separation distance corrections in the large formation time limit. M c
2,2,0

is the double Born contact diagram, corresponding to the second term in the Dyson series in
which two gluons are exchanged with the single scattering center.

3. Calculation and Results
The N = 1 in opacity energy loss derivation that was originally performed by DGLV evaluated
10 diagrams and utilized the large separation distance approximation ∆z � 1/µ to neglect
terms proportional to exp(−µ∆z). Although we retained such terms in our reevaluation of
the 10 diagrams in question, the large radiated gluon formation time approximation, ωi � µi,
allowed for a further simplification. As a result, only 2 of the 18 new small distance correction
pole contributions are suppressed. We show the two diagrams with non-zero contributions at
the amplitude level M1,1,0 and M c

2,2,0 in the large formation time approximation in Fig. 1.
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The full result for these two amplitudes under our approximation scheme is then

M 1,1,0 ≈ −J(p)eipx02gTa1ca1

∫
d2q1

(2π)2
v(0,q1)e−iq1·b1

× k · ε
k2 +m2

g + x2M2

[
ei(ω0+ω̃m)(z1−z0) − 1

2
e−µ1(z1−z0)

]
(4)

M c
2,2,0 ≈ J(p)ei(p+k)x0

∫
d2q1

(2π)2

∫
d2q2

(2π)2
e−i(q1+q2)·b1

× igTa2Ta1ca2a1v(0,q1)v(0,q1)
k · ε

k2 +m2
g + x2M2

×
[
ei(ω0+ω̃m)(z1−z0) + e−µ1(z1−z0)

(
1− µ1e

−µ2(z1−z0)

2(µ1 + µ2)

)]
. (5)

The double differential single inclusive gluon emission distribution is given by [12]

d3N (1)
g d3NJ =

d3~p

(2π)32p0

d3~k

(2π)32ω
×
(

1

dT
Tr〈|M1|2〉+

2

dT
<Tr〈M ∗

0 M2〉
)
, (6)

from which the energy loss, given by the energy-weighted integral over the gluon emission
distribution ∆E = E

∫
dxxdNg/dx, can be calculated from the amplitudes.

The main analytic result of our letter is then the N = 1 first order in opacity small distance
generalization of the DGLV induced energy loss of a high-pT parton in a QGP:

∆E
(1)
ind =

CRαsLE

πλg

∫
dx

∫
d2q1

π

µ2

(µ2 + q2
1)2

∫
d2k

π

×
∫
d∆zρ̄(∆z)

[
−

2
(
1− cos

{
(ω1 + ω̃m)∆z

})
(k− q1)2 +m2

g + x2M2

(
(k− q1) · k

k2 +m2
g + x2M2

− (k− q1)2

(k− q1)2 +m2
g + x2M2

)

+
1

2
e−µ1∆z

{(
k

k2 +m2
g + x2M2

)2(
1− 2CR

CA

)(
1− cos{(ω0 + ω̃m)∆z}

)

+
k · (k− q1)(

k2 +m2
g + x2M2

)(
(k− q1)2 +m2

g + x2M2
)( cos{(ω0 + ω̃m)∆z} − cos{(ω0 − ω1)∆z}

)}]
.

(7)

The small separation distance correction shown in the last four lines of Eq. 7 has the properties
we expect: 1) the correction goes to zero as the separation distance becomes large, ∆z → ∞
(or, equivalently, as the Debye screening length goes to 0, µ → ∞) and 2) the correction term
vanishes as the separation distance vanishes, ∆z → 0, due to the destructive interference of the
LPM effect.

We investigated the importance of the short separation distance correction term in Eq. 7
numerically to produce Figs. 2a, 2b and 2c. The numerical results use the same values as [12]:
µ = 0.5 GeV, λmfp = 1 fm, CR = 4/3, CA = 3, αs = 0.3, mcharm = 1.3 GeV and mbottom = 4.75
GeV, and the QCD analogue of the Ter-Mikayelian plasmon effect was taken into account by
setting mgluon = µ/

√
2. As in [15], kinematic upper limits were used for the momentum integrals

such that 0 ≤ k ≤ 2x(1−x)E and 0 ≤ q ≤
√

3Eµ. This choice of kmax guarantees that the final
momentum of the parent parton is collinear to the initial momentum of the parent parton and
that the momentum of the emitted gluon is collinear to the momentum of the parent parton.
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Figure 2: Fractional energy loss of charm and bottom quarks in a QGP with µ = 0.5 GeV and
λmfp = 1 fm for (a) fixed path length L = 4 fm, (b) fixed energy E = 10 GeV, and (c) fixed
energy E = 100 GeV. In the figures, “DGLV” dashed curves are computed from the original
N = 1 in opacity large separation distance DGLV formula while “DGLV + corr” solid lines are
from our all separation distance generalization of the N = 1 DGLV result, Eq. 7.

The fraction of momentum carried away by the radiated gluon, x, was integrated over from 0 to
1. The distribution of scattering centers, although originally assumed to be exponential in [12]
in order to account for the rapidly expanding medium, was here assumed to have the form of
a unit step function, since an exponential distribution biases towards short separation distance
scattering, lending excessive weight to contributions from short separation distance terms. The
choice of a step function distribution reduces the effect of the correction terms by ∼ 10% at low
(∼ 10 GeV) parton energies and ∼ 50% at higher (∼ 100 GeV) energies as compared to results
using an exponential distribution.

In Fig. 2a we show the fractional energy loss of charm and bottom quarks of varying energy
propagating through a 4 fm long static QGP brick. We note that the present calculation amounts
to an energy gain compared to the DGLV result.

In Fig. 2b we plot the fractional energy loss of charm and bottom quarks of energy E = 10
GeV for path lengths up to 5 fm. The integration over all separation distances (even in the
DGLV calculation) results in the non-zero effect seen here even for large path lengths and is
therefore not surprising, albeit unexpected.

Our most important result is shown in Fig. 2c, which presents the fractional energy loss of
100 GeV charm and bottom quarks propagating up to 5 fm through a QGP. The small distance
“correction” term dominates over the leading DGLV result for the first ∼ 3 fm of the path.
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4. Conclusions
An asymptotic analysis of Eq. 7, following [16], reveals that the correction term dominates
because it scales as E logE while the large separation distance term grows much slower, as
logE. This dominance is difficult to reconcile with experimental data and suggests that the
large formation time assumption is invalid in the DGLV approach

Since all energy loss formalisms, GLV, BDMPS-Z-ASW, AMY, and HT (see [1] and references
therein) exploit the large formation time approximation, we are faced with a need to reassess the
applicability of the large formation time assumption in any description of energy loss. Deriving
expressions in the other formalisms that do not rely on either the collinear or large formation
time approximations might also be formidable. Lastly, the factorization of the production of the
hard parton from the scattering will demand careful consideration in finite media, particularly
since the behaviour of a Debye screened scattering centre near the edge of a thermalized medium
is unclear.
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