
Quantum Boltzmann evolution of the Quark-Gluon

Plasma

William Grunow1,2, André Peshier1
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Abstract. The rapid equilibration of the Quark-Gluon Plasma, produced in nucleus-nucleus
collisions in a far-from-equilibrium initial state, seems to be difficult to understand theoretically.
One reason could be that almost all existing approaches based on the relativistic Boltzmann
equation neglect quantum-statistics features of the quarks and gluons. Against this background,
we put forward a novel Monte-Carlo method to solve the Boltzmann equation, with quantum
effects included.

1. Introduction
Recent heavy-ion experiments have confirmed the existence of a deconfined plasma of quarks and
gluons, the Quark Gluon Plasma (QGP) [1, 2]. The rapid (≤ 1 fm) onset of hydrodynamical flow
of the QGP requires rapid thermalization of the plasma; this is contrasted with the Color Glass
Condensate (CGC) picture which is a model of the initial conditions where the incoming nuclei
are saturated with gluons up to a saturation scale Qs. How this rapid thermalization of the QGP
occurs is a matter of much theoretical interest. It has been suggested by [3] that if the initial
conditions are dense enough, and number changing processes in early times suppressed enough,
that a transient Bose-Einstein condensate could develop. The development of a condensate
could significantly influence the dynamics of the plasma [4]. Whether or not the condensate
is kinetically able to form in the time constraints is currently unknown. Initial applications of
kinetic theory have neglected quantum effects, these classical models not only do not thermalize
rapidly enough, but also drive the system to a Maxwell-Boltzmann type equilibrium, precluding
the formation of a condensate. We thus want to study the kinetic theory of the QGP without
neglecting quantum effects.

2. The Boltzmann equation
To study the thermalization of the QGP and see if the rapid formation of a Bose-Einstein
condensate is kinetically allowed we turn to the Boltzmann equation. The Boltzmann equation
is a way of describing the evolution of the distribution function of a non-equilibrium system,
and reads,

d

dt
f(x,p, t) = C[f(p, t)]− v∇f(x,p, t), (1)

where f(x,p, t) is the distribution function. The v∇f(x,p, t) term describes the flow of matter
through space, for the purposes of this paper we will assume a spatially isotropic distribution
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function,and thus this term shall be zero.We will further assume momentum isotropy so that
the distribution function is only a function of the magnitude of the momentum. C[f(p), t] is
the so-called collision term which is a functional that describes the interaction between different
particles, for bosons,for a binary elastic interaction this term reads

C[f(p, t)] =
1

2Ep

∫
d3p2

(2π)32E2

1

ν

∫
d3p3

(2π)32E3

∫
d3p4

(2π)32E4
|Mp1p2→p3p4 |2

× [f(p3)f(p4)(1 + f(p))(1 + f(p2))− f(p)f(p2)(1 + f(p3))(1 + f(p4))]

× (2π)4δ4(p+ p2 − p3 − p4).

(2)

This expression details the rate at which particles are scattered into, and out of a particular
momentum state, by summing every kinetically allowed scattering event weighted by the
quantum mechanical amplitude (M2) for such a particular scattering to occur and the Bose
enhancement factors ( the (1 + f) terms). The Bose enhancement factors are absent in the
classical formulation. Most existing approaches, like [5] perform a classical approximation.

It is readily checked that the Bose-Einstein distribution,

fBE(p) =
1

eβE(p) − 1
, (3)

satisfies
C[fBE(p)] = 0, (4)

and thus is a fixed point of the Boltzmann equation.
The Bose enhancement terms strictly increase the rate at which scatterings occur, which

could lead to a more rapid thermalization.
The Boltzmann equation is a non-linear functional equation and has no general analytic

solution, and we resort to either applying simplifying assumptions to the model we study or rely
on a numerical solution which we detail now.

3. Numerical solution of the Boltzmann equation
To solve the Boltzmann equation, we use a Monte Carlo algorithm inspired by [5], we improve
upon in by not making the aforementioned approximation, albeit using a different method. This
was done by [6] as well, although using a different, more computationally expensive method
than what we will perform.

The idea behind our algorithm is as follows, the Boltzmann equation describes the scattering
of particles into new momentum states, so once an initial distribution is specified, we draw
an ensemble of N particles from this distribution, calculate the probability that each unique

particle pair will interact in some timestep ∆t,
(

there are N(N−1)
2 such pairs

)
, “roll the dice”

to determine which particle pairs interact and update the momentum of the scattered particle.
This specifies a new ensemble which is a representation of the new distribution function, at
t+ ∆t.

An ensemble of finitely many samples is going to have fluctuations, possibly large, which limits
the quality of the approximation of the distribution function, this can be overcome by averaging
over ensembles, the fluctuations average out, and we can extract a better approximation of the
distribution function.

With this in mind, instead of only performing the scattering step once, we roll the dice
multiple times to get many different ensemble representations of the new distribution function,
which we can reconstruct from the ensembles. We detail how we reconstruct the distribution
function is presented in the following section.
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The details of how the interaction probability of a pair of particles is calculated can be found
here [6].

Position space is discretized into cells, only particles within a single cell can interact. We’ve
only considered a single cell at this point. Having multiple cells will allow us to reintroduce the
flow term into the Boltzmann equation.

3.1. Reconstruction of the distribution function
Our algorithm requires the ability to reconstruct a distribution function from a given ensemble.

A typical technique to extract a probability distribution from an ensemble is to bin the
data into a histogram and interpolate an approximation of the function. This approach is,
however, not desirable in this context as the reconstructed distribution function should conserve
energy and accurately replicate the slope of, in particular, the Bose-Einstein distribution at
small momenta (where the contribution from Bose enhancement is expected to be largest). This
approach was taken by [6], and they required a very large number of particles work.

Instead, we smear each particle in the ensemble into a Gaussian-like “basis” function(chosen to
satisfy the criteria above), and the combination of these basis functions gives an approximation of
the true distribution function. This procedure also has a physical justification in the uncertainty
principle, where the width of the basis function corresponds to the uncertainty.

We found the most effective radial distribution functions given by the following form,

R(p;µ, σ) =
2

σ
√
π

Erf
(µ
σ

)
exp

(
−p

2 + µ2

σ2

)
sinh

(
2pµ

σ2

)
, (5)

where the parameters σ and µ control the width and the peak of the curve respectively. Energy
conservation constrains one of the parameters, we specify the width based upon the average
separation between particles in momentum space, which specifies the value of the peak.

Once the width σ is specified the position of the peak, µ, is specified(by energy conservation)
by

µ

Erf
(µ
σ

) = E (6)

when smearing a particle with energy E.

Figure 1: Here we see how the basis functions look for various values of the width parameter,
the original particle had a momentum specified by the dashed line.

Here we show a couple of examples of reconstructions done by this technique,
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Figure 2: A reconstruction of the radial Bose-Einstein distribution, the reconstruction was done
with 500 ensembles of 64 particles.
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Figure 3: A reconstruction of a radial Fermi-like distribution(inspired by the CGC), the
reconstruction was done with 500 ensembles of 64 particles.

this shows both the ability to accurately reconstruct the Bose-Einstein distribution, especially
getting the small momentum behaviour correct, and that it generalises to another distribution,
the same parameters are used for the reconstruction of both distributions.

4. Preliminary results
Whilst a full simulation has not yet been carried out, we present some preliminary results. We
considered the effect that adding quantum fluctuations would have on the scattering rate of
binary gluons, in particular the dominant t-channel exchange process,

Figure 4: Feynman diagram for t-channel binary gluon scattering
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with the corresponding regulated cross-section

dσ

dt
=

9παs

(t−m2
D)

2
(7)

We compute the interaction likelihoods of this process on an ensemble of 64 particles drawn
from a Bose-Einstein distribution for both the quantum case(inclusion of Bose enhancement)
and the classical case(no Bose enhancement)
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Figure 5: Calculation of the interaction
likelihoods 100 particle pairs using the
classical algorithm, the scattering time
will be dominated by the largest interac-
tion likelihood, in this case 0.1s−1
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Figure 6: Calculation of the interaction
likelihoods 100 particle pairs using the
quantum algorithm, the scattering time
will be dominated by the largest interac-
tion likelihood, in this case 100s−1

By looking at the most likely interactions in each case, we see an increase in the interaction
rate in the quantum case by 2-3 orders of magnitude. This is a promising result, whether it is
enough to see rapid thermalization is yet to be seen.

5. Conclusion
We develop a numerical algorithm to solve the Boltzmann equation with quantum effects
included; this required the development of a novel way of reconstructing a distribution function
from a representative ensemble. We hope that this can be used in the near future to investigate
the kinetics of Bose-Einstein condensate formation in the QGP. The high interaction rates
generated when including quantum effects requires a very short timestep, so detailed studies
using this code have not yet been done. The are some obvious numerical optimisations to be
done, for instance, the parallelization of the calculation of interaction probabilities. The next
features to be developed would be a robust technique for detecting the presence of a condensate,
an implementation of a running coupling, the inclusion of number changing processes and the
reintroduction of the flow term.
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