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Abstract. Thermodynamic properties of the quark-gluon plasma have been the subject of
active investigation over the past decades. Monte Carlo lattice calculations have made great
progress; in particular for the gluons, which form the first steps to full QCD. Nonetheless,
‘artifacts’ of this coarse-grained approach lead to uncertainties near the transition temperature,
which are closely related to the divergences encountered in continuum perturbation theory. The
latter must first be regularised and then renormalised, which we propose to do by comparing
to the QCD trace anomaly. Fixing the analytic results at a semi-pertubative temperature, we
find the bulk properties tend towards the free limit more gradually than has been presented in
recent lattice findings.

1. Introduction
At sufficient energy densities, of about 1 GeV/fm3, quantum chromodynamics (QCD) predicts
that ordinary nuclear matter melts into a deconfined state of quarks and gluons. Heavy-ion
collisions at RHIC and LHC are expected to probe this phase in the vicinity of the crossover
temperature Tc ∼ 200 MeV and part of the program to understand these experiments is
pinpointing the equation of state. Although not physically realised, asymptotic freedom of QCD
provides a rigorous limit for which the plasma is ‘weakly coupled’. In this (high temperature)
regime, well-defined approximations can be made and serve as a benchmark for theoretical
statements.

The pressure, which is related to the thermodynamic potential −pV , is a quantity of central
importance for statistical physics. Knowing the temperature dependence, one derives the entropy
density s = ∂p/∂T and energy density e = Ts − p. Lattice gauge theory has been the long-
standing approach to calculate equilibrium properties of QCD near Tc, and has revealed that
interactions remain ‘strong’ for Tc < T ∼< 4Tc. Recent studies in the quenched limit have
obtained the equation of state for values T ∈ [0.7, 1000]Tc, thus affording a comparison with
perturbation theory [1]. For an ideal gluon gas, the Stefan-Boltzmann pressure is

pSB = dg
π2

90
T 4 ,

where dg = 16 is the gluon degeneracy factor.
Interactions, built into QCD via the parameter α make the pressure deviate from its free

value. By virtue of the momentum dependence of the coupling constant α(q) for large arguments
(q � Λ, which we define later), perturbation theory can be used. This remains true at
high temperatures, where the average momentum q̄ is similar to the temperature, q̄ ∼ T (in
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equilibrium). Let the pressure be represented as an expansion in powers of α, with

p(T ; α) = p0(T ) + p1(T ) + p2(T ) + . . . , (1)

where pn(T ) ∼ O(αn). The normalisation is set by p0(T ) = p(T ; 0) = pSB and yields an upper
bound pSB ≥ p(T ; α).

The lowest order O(α) diagrams give a negative correction to the pressure, which may also be
related to an ‘excluded volume’ for gluons. For certain graphs of order O(αn), n ≥ 2, the direct
evaluation gives pn =∞. Such non-analytic behaviour stems from the long ranged nature of the
(gauge) force, and is well known from the classical Coulomb gas [2]. The remedy is to resum
infinitely many diagrams, giving a term of order O(α3/2) in Eq.(1). After this, at order O(α2), a
term α2 log(α) occurs and requires 3-loop diagrams to be screened [3]. Furthermore, the O(α2)
formula compels the use of the coupling α(µ), where µ is a renormalisation scale appearing in a
manner such that ∂p (T ; α(µ)) /∂µ is higher order than the approximation used.

The perturbative expansion for p(T ; α) is known through order O(α5/2), beyond which
the serious infrared difficulties of QCD prohibit further progress [4]. Nevertheless, asymptotic
formulae can be useful when truncated to a finite number of terms. A fixed order calculation
becomes precise1 in the limit α→ 0, for which purpose we shall study

p
(
T ; α(2πT )

)
= pSB

{
1 + c1α+ c3/2α

3/2 + α2(c2 + c′2 log(α)) + c5/2α
5/2 +O(α3)

}
. (2)

The term O(α3) contains a last perturbative piece, see [5], and a non-perturbative coefficient.
Since the asymptotic expansion does not converge, it is particularly sensitive to this last
coefficient – which has been ‘fit’ to the lattice data [1]. To avoid this aspect, we simply use
Eq. (2), with the known coefficients (and the canonical scale µ = 2πT ), to argue our case.

2. Renormalising via w(T )
Although p(T ) may be obtained on the lattice [6], it is more convenient to calculate the
interaction measure (also called trace anomaly),

w(T ) := e(T )− 3p(T ) = Tr Θ , (3)

where Θµν(T ) is the energy momentum tensor, equal to diag(e, p, p, p) in the local rest frame.
It thus follows that w(T ) ≥ 0 and this is indeed met by (2), reproducing the fact that p(T )/pSB
is a smoothly increasing function of T .

For a conformal theory, the equation of state e(T ) = 3p(T ) is true even for fully interacting
systems. Therefore, w(T ) 6= 0 can only arise for a system an with an additional scale, other
than T and V . This is indeed the case for QCD, where the energy scale Λ enters as a pole in α,
for example the 2-loop formula

α(µ) ' 4π

11t

{
1− 102 log t

121t

}
, with t = log(µ2/Λ2) .

To clarify this point, note that from (3) we may express

w(T ) = T
d

dT

{ p(T )

T 4

}
. (4)

Hence, for a ‘fixed’ coupling, p(T ; α)/T 4 is constant and thus w(T ) = 0. In order to obtain a
non-zero w(T ), it is necessary to renormalise, i.e. specify how α in Eq.(2) depends on T . To

1 Here we mean that the absolute error tends to zero, usually as ∼ exp(−1/α), although the sign may (and does
in this case) depend on the level of truncation.
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Figure 1. The interaction measure as a function of temperature as calculated on the lattice
[1]. The inset focuses on T ∼> 5Tc, and shows the perturbative result for w(T ) with the
renormalisation points circled in yellow, orange and red (T? = {30, 100, 400}Tc respectively).
For T > T? as shown by the arrows, the formulae consistently agrees with the lQCD data.

this end, we choose the popular scale µ = 2πT and use the 2-loop formula for the coupling.
Applying (4) to Eq.(2) yields a model for w(T ). Our idea is then to fix the residual scale Λ, by
directly matching the perturbative formula to the lattice value, viz. w(T?) = wlQCD

? . Since the
lattice results are calculated in units of Tc, the single free parameter in our comparison is the
ratio λ = Λ/Tc.

Fig. 1 shows the results for w(T ), using a semi-perturbative T? to fix the value of λ. Testing
the scheme at T? = {30, 100, 400}Tc consistently gives λ ' 0.5. Provided that α(T?) is sufficiently
small2 at the determined value for λ, approximations for w(T ), where T � T?, should (and do)
corroborate the lattice values. Below T?, there is no reason to expect that p(T ; α) should
converge and the shape of w(T ) for temperatures T ∼> 2Tc has been understood in terms of
quasiparticles [7]. The pressure in Eq.(2) is then specified, having adjusted λ in our scheme to
wlQCD .

One of the principle challenges in lattice QCD, is taking the continuum limit (which is, not
by coincidence, the same limit that Λ emerges). By computing w(T ), one avoids having to
subtract the zero point contribution to p(T ) or e(T ) . From the interaction measure (4), given
as a function of T , the pressure can be reconstructed, up to an integration constant,

p(T )

T 4
=

p(T0)

T 4
0

+

∫ T

T0

dτ

τ

{ w(τ)

τ4

}
. (5)

This integral method depends on w(T ) over a range of values for T . In particular, the area
bounded by the interaction measure over all temperatures gives the normalisation of p(T )
[presuming that p(T )→ 0 at zero temperature]. With information on w(T ) only at a discrete set
of values for T , Eq.(5) is at best a Riemann sum, and dependent on extrapolation to ‘endpoints’
T = 0 or T = ∞, depending on whether T <

> T0. Furthermore, p(T )/T 4 receives a large
numerical contribution near the peak value of w(T )/T 4, at about T/Tc ' 1.1 .

2 Characterising α as ‘small’ depends on the nature of the asymptotic series.

Proceedings of SAIP2016

SA Institute of Physics ISBN: 978-0-620-77094-1 482



0.93

0.94

0.95

0.96

0.97

p(
T
)/
p S

B

10 102 103 T/Tc

Figure 2. The pressure as a
function of temperature (in units
of the free value) for nf = 0.
Shown as blue points are the
lattice data [1]. The yellow, red
and orange curves are obtained by
renormalising according to w(T ),
Fig. 1. Solid lines indicate T? < T ,
where the approximation schemes
should converge. Evidently there is
a systematic discrepancy of ∼ 1%
with the lattice data.

3. Reason for concern
Given the precision of pure gauge lQCD data, we now point out a discrepancy that has so far
escaped notice. The previous section outlined two approaches to calculating the pressure p(T ),

(i) using a truncated asymptotic formula, i. e. Eq.(2),

(ii) by means of (5), from w(T ) determined on the lattice [1].

Shown in Fig. 2 is p(T ) at large temperatures T > 10Tc according to these two distinct methods.
Evidently they disagree at about 1% of the free limit and, more urgently, the values for p(T?)
fail to match at the renormalisation point. Method (i) appears to give robust predictions for
T? < T , but systematically underestimates the lattice values.

This failure is actually crucial to resolve because it emerges from a well-defined limit, in which
theoretical descriptions should be under control. The perturbative analysis of the QCD trace
anomaly indicates a slower approach of the p(T ) to the free limit [and similarly for e(T ) and
s(T )]. Our conclusion may seem of little consequence for phenomonology of heavy-ion collisions.
However, an uncertainty of one percent in p(T )/pSB can translate into an order of magnitude in
the temperature T/Tc (see Fig. 2). This casts aspersions on hydrodynamic simulations, where
the equation of state is needed to evolve Θµν prior to freeze-out.
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