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Abstract. We estimate the one loop quantum correction to the kink-antikink potential by
computing the vacuum polarization energy as a function of the kink-antikink separation.
This energy is calculated from scattering data for fluctuations about the static kink-antikink
configuration. To construct a well-defined quantum theory for these fluctuations an additional
constraint must be implemented.

1. Introduction
Non-linear field theories may produce classical solutions that have a localized energy density.
These solutions are called solitons or solitary waves [1]. In many cases these solitons have
particle properties. The most prominent example is the Skrymion as a model for baryons [2, 3]1.
In these identifications the integrated energy density is the mass of the particle. Typically
this integral overestimates the actual mass of the particle because quantum corrections are
omitted. This is not problematic when investigating properties of a single particle. However,
the quantum corrections may become important when comparing configurations with different
particle numbers as it occurs, for example, when computing binding energies of compound
objects. The leading quantum correction to the soliton energy is the vacuum polarization
energy (VPE). The VPE is the renormalized sum of the shifts of the zero point energies of
the quantum fluctuations due to their interaction with the background configuration generated
by the soliton. Being a quantum field theory calculation a proper renormalization must be
applied. In the present study we therefore calculate the VPE of the soliton-antisoliton potential
in a renormalizable model with a quartic self-interaction in one time and one space dimensions.

2. VPE and spectral method
The calculation of the VPE from scattering data is by now a well established endeavor in the
framework of spectral methods [5]. To apply these methods we call the soliton solution to the
field equation φ0(x). Then we introduce time dependent fluctuations η(x, t) = ηω(x)e−iωt and
linearize the full field equation. This gives rise to a relativistic wave-equation

ω2ηω(x) =

[
− d2

dx2
+ U [φ0(x)]

]
ηω(x) , (1)

where U [φ0(x)] is the potential for the fluctuations generated by the background soliton. This
wave-equation is a standard problem in potential scattering [6]. The background polarizes the

1 For a recent review see Ref. [4].
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quantum fluctuations ηω(x) in two aspects. First, it creates bound states with energies ωj and
second, the density of the scattering states is distorted. The scattering states have energies
ω =

√
k2 +m2 where k is the momentum and m the mass of the fluctuating field. Then the

distortion of the density of scattering states is measured by the derivative of the scattering phase
shift δ(k). Weighting the contribution from the scattering states to the VPE accordingly yields

Evac =
∑
j

ωj
2

+
∑
p=±

∫ ∞
0

dk

2π

√
k2 +m2

dδp(k)

dk

∣∣∣∣
renorm.

, (2)

since in one space dimensions there are two scattering channels when the potential is reflection
invariant. These two channels are characterized by symmetric (p = +) and anti-symmetric
(p = −) wave-functions when x→ −x.

Renormalization is accomplished in two steps. First the divergent contributions to the
momentum integral in Eq. (2) are identified from the Born series. They are subtracted under
the integral and added back to the VPE as Feynman diagrams. In the second step the
divergences of the Feynman diagrams are removed with the help of standard counterterms
whose coefficients are universal for a fixed renormalization scheme. For the current problem
with boson quantum fluctuations in one space dimension this procedure is quite simple because
only the first order tadpole diagram is divergent. This diagram is local and can be fully removed
under renormalization. Applying Levinson’s theorem to the formal expression and integrating
by parts yields the VPE

Evac =
1

2

∑
j

(ωj −m)−
∑
p=±

∫ ∞
0

dk

2π

k√
k2 +m2

[
δp(k)− δ(1)p (k)

]
, (3)

where δ
(1)
p (k) is the Born approximation to the phase shift in channel p.

3. Kink-antikink configuration
To be specific we consider the φ4 model in one space and one time dimension. This model is
defined by the Lagrangian

L =
1

2
∂µφ∂

µφ− λ

4

[
φ2 − m2

2λ

]2
(4)

where λ is a coupling constant. The corresponding field equation contains a static solution,
the so-called kink, φ0(x) = (m/

√
2λ)tanh(mx/2). The antikink solution is obtained by spatial

reflection. These solutions build the soliton-antisoliton (or kink-antikink) configuration

φR(x) =
m√
2λ

[
tanh

(
m

2
(x−R)

)
− tanh

(
m

2
(x+R)

)
+ 1

]
, (5)

for which we want to compute the potential as a function of the fixed separation 2R. There are
classical and VPE contributions.

The classical potential is obtained by substituting the parameterization, Eq. (5) into the
Lagrangian, integrating over the coordinate x [7] and subtracting twice the kink mass:

Vcl(R) =
2m3

λ

[
Rm+

3

tanh(Rm)
− 2 + 3Rm

tanh2(Rm)
+

2Rm

tanh3(Rm)
− 1

]
. (6)

To compute the VPE contribution we need to solve Eq. (1) for U [φR(x)]. However, this does
not lead to a well-defined quantum theory for the fluctuations as can be seen from the following
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argument. When the kink and antikink are widely separated, i.e. R → ∞, each possesses the
translational zero mode ω2 = 0 as well as the breather bound state with energy ω2 = 3m2/4 [1].
When reducing R, the two zero mode solutions split with one bound state energy squared turning
negative. This produces an imaginary energy eigenvalue [9] and must be avoided. We do so by
recalling that the distance R is fixed and no fluctuations in this direction should be admitted.
This induces the constraint

∫∞
−∞ dx ηω(x)z(x) = 0 with

z(x) = N
d

dR
φR(x) and N−2 =

∫ ∞
−∞

dx

(
d

dR
φR(x)

)2

. (7)

This constraint turns the wave-equation into an integro-differential equation that describes a
non-local interaction

−η′′ω(x) = k2ηω(x)−
(
U [φR(x)]−m2

)
ηω(x)+z(x)

∫ ∞
−∞
dy
[
z(y)

(
U [φR(y)]−m2

)
− z′′(y)

]
ηω(y) .

(8)
Here primes denote the derivative with respect to the spatial coordinate. Since z(x) vanishes
asymptotically, this equation represents a well-defined scattering problem from which phase
shifts and their Born approximations can be computed. We also note that the constraint only
affects the symmetric (p = +) channel. It does not take effect for large separation R where z(x)
parameterizes two independent translational vibrations that, by construction, are orthogonal to
the remaining fluctuations.

4. Scattering data
To compute the phase shift δ+(k) in the symmetric channel from the integro-differential
equation (8) we introduce u(x) = U [φR(x)]−m2 and parameterize ηω(x) = eνS(x) cos[kx+δS(x)].
This leads to coupled differential equations2

dδS(x)

dx
= −1

k
c(x)

[
u(x)c(x)− αz(x) e−νS(x)

]
dνS(x)

dx
= −1

k
s(x)

[
u(x)c(x)− αz(x) e−νS(x)

]
, (9)

where c(x) = cos[kx + δS(x)] and s(x) = sin[kx + δS(x)]. Furthermore α is a Lagrange
multiplier that is iteratively adjusted such that

∫∞
−∞ dxz(x)c(x)eν(x) = 0. This system of

equations is solved with the initial conditions δS(0) = 0 and ν(0) = 0 for a given value k.
Then δ+(k) = limx→∞ δS(x). In the antisymmetric channel we similarly parameterize ηω(x) =
eνA(x) sin[kx + δA(x)]. Since the constraint is not active in that channel, the wave-equation
simplifies to an ordinary differential equation

dδA(x)

dx
= −u(x)

k
sin2[kx+ δA(x)] . (10)

The initial condition δS(0) = 0 then produces δ−(k) = limx→∞ δA(x). The Born approximations

δ
(1)
± (k) are similarly obtained from the linearized versions of equations (9) and (10) with α = 0

since in the renormalization process we need to resemble the full Feynman diagram3.
As it is the case for the scattering data, cf. Eqs. (9) and (10), the bound state wave-functions

are either symmetric or antisymmetric under spatial reflection. Of course the discrete sum
(∑

j

)
2 The two functions are related by c(x)dνS(x)/dx = s(x)dδS(x)/dx [8].
3 Of course, formally we could compute the diagram subject to the constraint, but this would unnecessarily
complicate matters.
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Table 1. Bound state energies in the symmetric (ω
(+)
j ) and antisymmetric (ω

(−)
j ) channels for various

values of the separation distance R.

bound state R = 0.25 R = 0.5 R = 0.75 R = 1.0 R = 3.0 R = 4.0

ω
(+)
1 0 0 0 0 0 0

ω
(+)
2 — 1.905 1.719 1.592 1.723 1.731

ω
(−)
1 1.815 1.350 0.927 0.606 0.012 0.002

ω
(−)
2 — — 1.999 1.955 1.740 1.733

in Eq. (3) comprises these channels. We obtain the bound state energies by first constructing
a set of basis states via implementing boundary conditions on the non-interacting solutions
(U ≡ m2) at a distance L representing spatial infinity. Within this basis we compute matrix
elements of the operator on the right-hand-side of Eq. (1) and find its eigenvalues. Those
below m2 are the bound state energies (squared). Since the bound state wave-functions decay
exponentially at large x, the corresponding energies are not sensitive to the particular value of
L as long as it is large enough. For the symmetric channel with the constraint we diagonalize
the operator from Eq. (1) after sandwiching it between the projector 1− |z〉〈z|. Note that this
always causes a zero mode to appear for the solution, |z〉 that is annihilated by the projector.

With these solutions to the constraint wave-equation we compute the VPE from Eq. (3) for
distinct values of the distance R. Subtracting twice the VPE of a single (anti)kink yields the
leading quantum correction to the kink-antikink potential as a function of R.

5. Results
To produce numerical results we redefine the field and the coordinates such that m = 2 and
λ = 2.

In table 1 we list the bound state energies as a function of the kink-antikink separation R
that result from the wave-equation (8). A zero mode always appears in the symmetric channel

because of the projection. As R→∞ the lowest bound state, ω
(−)
1 in the anti-symmetric channel

also turns into a zero mode. In the same limit the second bound state, ω
(−)
2 approaches the

breather energy at
√

3m/2.
We also note that the resulting phase shift for the constraint scattering problem reproduces

Levinson’s theorem

δ+(0) =

(
n+ −

1

2

)
π and δ−(0) = n−π (11)

for scattering in one space dimension [10, 11]4. Here n+ and n− are the number of bound states
in the symmetric and anti-symmetric channels, respectively. Note that n+ also counts the zero
mode from the constraint. This statement can readily be verified for R = 0.5 for which we plot
the phase shifts in figure 1.

In figure 2 we compare our main result for the quantum energy of the kink-antikink system
relative to the quantum energy of two independent kinks

Vvac(R) = Evac(R)− 2E(kink)
vac (12)

to the classical counterpart from Eq. (6). While the latter is indeed known to be attractive
we find that the quantum correction is repulsive. However, in magnitude it is not enough to

4 A formal proof of the theorem for non-local interactions is presented in Ref. [12].
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Figure 1. (color online) Phase shift in
the symmetric (δ+) and antisymmetric (δ−)
channels for separation distance R = 0.5.

Figure 2. (color online) Quantum
correction to kink-antikink potential as a
function of the separation R defined in
Eq. (12). Also shown is the classical
potential from Eq. (6).

turn the whole potential into being repulsive. On the contrary, we find that (in absolute value)
the VPE is significantly smaller than the classical potential. This, of course, is consistent with
the VPE being a mere correction. Nevertheless, we see from figure 2 that the total potential
Vcl(R) + Vvac(R) produces a small barrier at an intermediate distances. Hence the quantum
corrections indeed have the potential to stabilize a classically unstable configuration.

Though we have circumvented the fundamental problem of dealing with imaginary frequencies
by introducing a constraint, this leads to an inconsistency that still needs to be resolved. A closer
look at figure 2 shows that Vvac approximates 0.36 in the limit R → 0. This is actually the trivial

configuration which has zero VPE so that Vvac → −2E
(kink)
vac which in our units is 0.94. In this

limit the non-zero result for the VPE originates purely from the constraint.

6. Conclusion and open problems
We have estimated the one-loop quantum correction to the kink-antikink potential. This is a
prototype calculation of quantum corrections that require the comparison of soliton energies for
different particle numbers. This will eventually shed more light on the predictions for classically
stable configurations with large particle numbers such as nuclei [13], for example.

We observe that the quantum correction mitigates the strong attraction seen in the classical
kink-antikink potential. Our findings are consistent with the VPE being just a correction to
the classical energy. Interestingly enough, though, the quantum correction produces a mild
repulsion at intermediate separation suggesting that these corrections stabilize a classically
unstable configuration.

We have already mentioned the inconsistency of our VPE result for the trivial configuration
R → 0. We note that φR(x) is actually not a solution to the field equations and therefore a static
source term in the wave-equation (1) must be added. Currently we investigate how this source
term contributes to the kink-antikink potential. There may be both, a direct contribution and
an indirect one as a modification of the constraint may turn out inevitable.
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