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Abstract. The maximum entropy method (MEM) is a key technique for spectral analysis. Its
main feature is to describe spectra at low frequency with short time-series data. We adopted
MEM to analyze the spectrum from the dipole moment obtained via time-dependent density
functional theory (TDDFT) calculations in real time, which are intensively studied and applied
to computing optical properties. With the MEM analysis, we proposed the use of a concatenated
data-set made from repeated raw data coupled with the phase shift. We applied this technique
to the spectral analysis of the TDDFT dipole moment of oligo-fluorene with n = 8. As a result,
higher resolution was obtained without any peak shift due to the phase jump. The peak position
is in good agreement with that of Fourier transform with just raw data. This paper presents
the efficiency and characteristic features of this technique.

1. Introduction

Time-dependent density functional theory (TDDFT) is a powerful tool to analyze the optical
properties of medium-to-large sized molecules. We employ a real-time and real-space technique
to solve the time-dependent Kohn-Sham equations. Within the framework of this approach, the
wave functions are calculated using the finite difference method on real spatial grids [1] without
using explicit bases such as plane waves or Gaussian. In our procedure to calculate the optical
properties, we use the time-series data, namely the dynamic dipole moment, from which the
Fourier transform (FT) optical properties are calculated using a typical technique. The spectral
resolution depends on the length of the dipole moment. The computational cost to obtain good
resolution is quite large.

To solve this difficulty, we use the maximum entropy method (MEM) [2], which is a key
technique in spectrum analysis. The principles of MEM are based on information theory for
estimating unknown probability distributions based on the information about their expected
values. MEM is widely used to solve a variety of problems related to spectral estimation in
fields such as earth planetary science [3] and spectroscopy [4]. Its primary feature is that it
can obtain fairly high resolution and accuracy with a relatively small number of time-series
data. MEM is based on the autocorrelation function, that Fourier transformation is the power
spectrum. We applied this technique to the spectral analysis of the time-dependent dipole
moments of molecules using real-time TDDFT. In a comparison of the MEM and FT spectra
for several molecules, we observed that MEM requires less time steps than does FT to obtain
an optical spectrum with the same resolution [5]. As a new improved MEM, we propose using



a concatenated data-set made from repeated raw data [6] coupled with the phase shift so as to
avoid the side effect of artificial periodicity. With this improvement, we successively obtained a
much better spectral resolution of the target peak. Therefore, this improvement will constitute
a further advantage of MEM.

We applied this technique to a spectral analysis of the TDDFT dipole moment of typical
molecules such as benzene, oligo-fluorene, and other materials. In the analysis of their optical
properties, we are interested in the lower energy peak, which corresponds to the band gap area.
The results show higher resolution and emphasized peaks near the band gap without the effects
of artificial periodicity. In this paper, we present the characteristic features of this technique
compared to FT and conventional MEM.

The paper is organized as follows. In the next section, we briefly describe the procedure of our
TDDEFT calculation. Then, we explain MEM and our new improvement. In the following section,
the results of the absorption spectra of molecules are presented, and the observed characteristics
of our MEM are followed our conclusions. We adopt atomic units throughout this paper.

2. Method

2.1. Time-dependent density functional theory

In this section, we briefly describe the procedure of our TDDFT calculation [7]. The basis of
the procedure is the density functional theory (DFT) [8] with the local density approximation
(LDA). The total energy of the ground state can be derived from the Kohn-Sham equation (KS)
[9]. DFT is much less successful in describing optical responses and absorption spectra when
electronic excited states are involved. However, this difficulty is, in principle, solved by the
extension of DFT to its time-dependent version, TDDFT, which was established by Runge and
Gross [10]. In analogy to the time-independent case, the TDDFT equation of motion coupled
with the pseudopotentials is given by

[ SV VELE) + Vire, ) + Vicolo(r, 0] 4 Ve, D g 0) = i orasmt) . (1)

where VP® is an ionic pseudopotential, Vi is the Hartree potential, and Vx¢ is the exchange
correlation potential. Since the exact time-dependent xc kernel is not known, the originally non-
local time-dependent xc kernel is replaced with a time-independent local one. This is reasonable
when the density varies slowly with time. This approximation allows the use of a standard local
ground-state xc functional in the TDDFT frame work. The Hartree and exchange-correlation
potentials can be determined from the electronic charge density,

p(r,t) = Zj (e, )] (2)

The summation is over all occupied states j. The Hartree potential is determined by V2V =
—47p, and as the usual LDA is used in our study as the xc potential Vx¢. For the ionic potential,
we employed the pseudopotential VP® in its separable form so that only the valence electrons
were considered [11]. Prior to the calculation of the optical responses, we first solved the usual,
time-independent formulation of the pseudopotential-DFT method [12] to obtain the optimized
electronic structure [13]. Then, we applied an external field V., to the system as a perturbation
and followed the linear responses of the system in real time. The xc functional we adopted is
originally for the electronic ground states. This method of TDDFT has been effectively used for
cases where the potential was time-dependent to study the behaviors of electrons in oscillating
electric and magnetic fields and therefore excited-state reactions [14]. In our calculations, the
real-time and real-space technique was adopted in solving Eq. (1) by means of the finite difference
approach [1]. A uniform grid was used in our study for simplicity.



The time dependent wave function is given by 9 (t) = exp[—iH t]1(0), with the initial wave
function ¥ at t = 0, 3 '
Yo = e™(0), 3)

where H is the Hamiltonian of the system, and k. is a small wave number corresponding to the
external perturbation in the z direction. In the linear response, the time-dependent polarizability
is proportional to the dipole matrix element j¢(t) = ((t)|£]1(t)), where £ represents x, y and
z. The polarizability o¢(w) is numerically calculated using the Fourier transformation (FT) of
pe(t) and averaged as o = (a + ay + ;) /3. The oscillator strength distribution S(w) is related
to the imaginary part of the polarizability,

2w

S(w) = —Im a(w). (4)

™

2.2. Maximum entropy method
In this section, we briefly describe the procedure and derivation of MEM. The entropy in
information theory has been recognized as a measure of the uncertainty [15, 16]. Any inferences
made from incomplete information should include a probability distribution that maximizes the
entropy under the constraints of the available information [17].
The present study is based on Burg’s method [2]. When each random variable u(t) obeying
the Gaussian distribution,
/At
h o / log P(w)dw, (5)
—7/At
is maximized, this h is taken as the entropy. The time-series data, e.g., the dipole moment
discretized at time t = nAt with the time step At and the number of steps n is newly denoted
as p(n). In Eq. (5), P(w) is the power spectrum, which is directly comparable to S(w).

Pw) = At Z Chn exp(—iwmAt) (6)
1 77r/At

Cp = — / P(w) expiwmAt)duw, (7)
2m —7 /At

where C), is the calculated autocorrelation at the time lag m as mentioned below. The solution
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where M is the maximum length of the autocorrelation Cjs. The parameters a,, and § are the
Lagrange multipliers and they are the solution of the Yule-Walker equation [18],
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We adopt the Levinson-Durbin algorithm to solve Eq. (9) efficiently. The autocorrelation C,,

at the lag m is
1 N—-—m—1

Cm =5 Y. w(muln+m), (10)

n=0



where N is the length of the time-series data. We extend the autocorrelation to the complex
data. The periodicity of the signal is expressed by the lag in the autocorrelation. The value at
shorter lags shows the contribution from high frequencies, and the value at longer lags shows
the contribution from low frequencies. Even though the information in the low energy region is
important for the optical spectrum analysis, the value of the autocorrelation at larger lags can
become quite small. The effective value of M is restricted by the number of data N. Therefore,
we require a sufficiently large N to obtain a reasonable spectral resolution in the low frequency
region; the same as in the case of FT.

2.3. Improvements to MEM
As a new improved MEM, we propose using a concatenated data-set made from repeated raw
data coupled with the phase shift so as to avoid the side effect of artificial periodicity.

We are interested in the lower energy region. To emphasize the signal in this region, we
need a larger lag M, which is the maximum lag of the autocorrelation. However, increasing
M sometimes causes unphysical results such as peak splits and false peaks. In addition, the
number M is limited by the total number of time steps IN. To solve this difficulty, we repeat
the raw data many times as shown in Fig. 1(b). The resolution in the lower energy region is
attributed to the maximum lag M. With the repeated signal, the value of M may be selected
at sufficiently large values without additional computations. With this procedure, we can save
on computational costs.

At the concatenated point, of course, there is a phase jump for each frequency component,
which is recognized as noise in the total signal. To reduce side effects of the phase jump such
as peak shifts, we introduced a phase shift at each concatenated data in the repeated data.

fi(n) = p'(n) exp(ike), (11)

where p/(n) is the repeated raw data, and fi(n) is the k-times repeated and concatenated data
@' (n) with an appropriate phase ¢ for the target frequency (—m < ¢ < 7). This introduction of
the phase to the signal does not affect to the total power spectrum due to the definition used
in Eq. (8). Of course, a different target frequency has a different phase. Since the phase ¢ is
a constant value, it is necessary to choose the appropriate phase for the target frequency to
minimize the side effects of the phase jump due to the concatenated repeated data. Figure 1(c)
shows the repeated data N = 5000 x 4 with the phase ¢ = 0.257, whose data is obtained from
the TDDF'T signal applied to the oligomer of fluorene with n = 8. In this case, we can see that
the raw data is in the first 5 x 103 steps and ¢ = 0.257 is introduced in the next 5 x 10% steps,
2 X ¢ in the following 5 x 10 steps, and so on. We can select the ¢ so as to maximize the
target peak. A mismatched phase naturally makes the signal cancel, weakening the strength.
Therefore, we choose this phase to match the bandgap peak appropriately in our study.

3. Results and Discussion
In this section, we show the calculated absorption spectrum of the total oscillator strength of
the improved MEM. Then, we discuss the characteristics of our method compared to the results
of conventional MEM and FT.

3.1. Benzene, Naphthalene, Anthracene, and Tetracene

As a simple example to confirm the efficiency of our proposed method, we applied our improved
MEM to the analysis of benzene, naphthalene, anthracene, and tetracene. The molecular
structure of these molecules is based on the ground state. The time evolution is carried out
according to real-time TDDFT [7, 13]. The spectrum S(E) is calculated from the time-series
data in our MEM technique. The results are shown in Fig. 2, where the solid line is the result
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Figure 1. Comparison of the time-series data for oligo-fluorene with n = 8, which
was made using real-time TDDFT. (a) Real time evolution up to N = 20000 for FT.
(b) Four times repeated data of the dipole moment with N = 5000 x 4. (c) The data
in panel (b) together with the phase ¢ = 0.257. The solid line is the real part of the
data, and the dashed line is the imaginary part of the data.

for benzene, the dashed line is that for naphthalene, the dash-dotted line is that for anthracene,
and the dotted line is that for tetracene. These spectra are normalized by the intensity at the
first peak. Figure 2(a) shows the results of the improved MEM. The parameters (M and ¢) of
our MEM are M = 1800 and ¢ = —0.257 for the analysis of benzene, M = 2500 and ¢ = —0.207
for that of naphthalene, M = 2000 and ¢ = —0.237 for that of anthracene, and M = 3000 and
¢ = —0.217 for that of tetracene. For both MEM calculations, the same number of the time
steps, N = 10000 x 100, is used. Figure 2(b) shows the results of FT with N = 10000. Our
method provides good resolution compared with that of FT. In addition, we can see a clear
spectrum in comparison to FT. This is one feature of our MEM.

3.2. Fluorene

Poly(9,9-dialkyl-fluorene) and their substituted derivatives are used as organic LED materials
and are expected to be basic materials for blue emission LEDs. Their electronic structures have
been extensively studied [19, 20, 21, 22, 23]. We employed the oligomer of fluorene (oligo-FL)
with n = 8 and performed the MEM calculation. The molecule size is fairly large; therefore,
then the calculation for each step is quite expensive. It takes a long time to perform the
calculation to obtain the low energy part of the spectrum. If we can save on the calculation
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Figure 2. Comparison of the improved MEM and FT spectra for benzene (solid
line), naphthalene (dashed line), anthracene (dash-dotted line) and tetracene (dotted
line). (a) Results of the improved MEM using N = 10000 x 100 with M = 1800 and
¢ = —0.257 for benzene, M = 2500 and ¢ = —0.207 for naphthalene, M = 2000 and
¢ = —0.237 for anthracene, and M = 3000 and ¢ = —0.217 for tetracene. (b) Results
of FT with N = 10000. All the spectra are normalized at the first low energy peak.

cost when calculating the lower energy part of the spectrum, our method will be considered
effective. We applied our improved MEM to this signal analysis. Figure 3 shows a comparison
of the absorption spectra using four different methods. The solid line shows the result of the
improved MEM with N = 5000 x 100, M = 2500, and ¢ = 0.257, the dashed line is that of F'T
for N = 20000, the dash-dotted line is our conventional MEM spectrum with just the real time
steps N = 5000 and M = 2500, and the dotted line is that of MEM with N = 5000 x 100 and
M = 2500. These spectra are normalized at the second low energy peak.

FT (the dashed line) and the simple MEM (the dash-dotted line) provide a broad peak at the
bandgap area. With only the repeated signal (the solid and dashed lines), the strength of the
first peak is emphasized. Without a phase shift, we can observe that the peak position shifts due
to the side effect of the phase jump [6]. However, we can obtain a clear first peak using our new
method (the solid line). In this case, we choose the matched phase corresponding to the first
peak. Therefore, the position of the second peak differs from those in the other methods. (Note
that the normalization of the signal was done at the second peak.) If we choose the mismatched
phase for the target peak, the position of the peak shifts and the strength decreases, as we
mentioned above. The bandgap peak at 2.53 eV for the improved MEM may correspond to the
experimentally observed peak at 3.56 eV for poly-FL. This discrepancy is due to an inherent
problem in DFT [7].

3.8. C60 fullerene

Our new MEM does not always works well for the target frequency. In this section, we show a
case where our MEM does not work well, when there are several peaks close to each other. To
separate each peak clearly, we need sufficient time series data, not only for MEM but also for
FT.

Figure 4 shows the result for C60 fullerene. We can see that the separation is not sufficient,
even if we use the concatenated repeated data with the phase shift. The solid line is the result
of our MEM with the signals N = 10000 x 100 together with the phase ¢ = —0.1257 and
M = 6000. The dashed line shows the result of FT with N = 10000. In this case, we can see a
clear first peak to compare to that of MEM.

This is because, if the length of the data N is not sufficient, we obtain a broad peak, similar
to the Lorentz function, in any MEM calculation. In particular, when the strength of one of the
closer peaks is high, the slope of the peak affects the strength of the smaller peaks. Of course, if
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Figure 3. Comparison of the absorption spectrum for oligo-fluorene with n = 8. The
dashed line is the result of FT with N = 20000, the dash-dotted line is that of MEM
with N = 5000, the dotted line is that of MEM with repeated data N = 5000 x 100,
and the solid line is that of the improved MEM with N = 5000 x 100, M = 2500, and
¢ = 0.257. The spectra are normalized at the second low energy peak.
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Figure 4. Absorption spectrum for C60 fullerene. The dashed line is the result of FT
with N = 10000, and the solid line is that of the improved MEM with N = 10000 x 100,
M = 6000, and ¢ = —0.1257. The spectra are normalized at the highest peak in the
region of 0-10 eV. The experimental absorption peaks at 3.8, 4.8 and 5.8 eV [13].



we have a sufficiently large total time step N, a clear separation should be obtained. Therefore,
we need calculate the time evolution until the information of the low energy part is obtained.

4. Concluding remarks

We employed MEM to obtain the optical spectra of molecules, and the spectral resolution was
significantly improved compared to that of FT with the same number of total time steps. As
an improvement, we introduced the use of repeated signals together with the phase to make
seemingly long data, in which a larger time lag was included. In particular, this is an efficient
technique to find the low energy peak. We obtained significantly better resolutions for the
target peak without adding further calculated data. This means that we can efficiently reduce
our calculation costs. However, our new MEM does not always work well for the target peak.
Using this method for the spectrum analysis, we cannot obtain a low energy component that is
not included in the data. We need to calculate a certain amount of time evolution before the
information of the low energy part can be obtained.
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