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Abstract. We study the free evolution of frictional granular gases using large scale molecular
dynamics simulation in three dimensions. The system cools due to solid friction among the
interacting particles. At early stages of evolution, the density field remains homogeneous and
the velocity field follows the Maxwell-Boltzmann (MB) distribution. However, at later times,
the density field shows clustering and the velocity field shows local ordering. The ordering in
the velocity field is studied by invoking analogy from phase ordering systems. The equal-time
correlation function of velocity field follows dynamical scaling. The correlation length of velocity
field, Lv(t), exhibits power law growth: Lv(t) ∼ t1/3.

1. Introduction
Granular materials are one of the most significant and simple forms of matter [1]. A granular
system consists of a large number of mesoscopic particles of regular and irregular shapes with
smooth or rough surfaces. The typical size of a particle in a granular system ranges from few µm
to few cm [2]. These particles loss their kinetic energy due inelasticity and friction, when they
collide and slide past each other, and makes a granular system different from ordinary liquids or
gases, where it is assumed that energy remains conserved during the collisions between the atoms
and molecules. Also, the typical scale of the energy of a granular system is much higher than the
thermal energy, i.e., kBT . Thus, granular systems are athermal in nature, and temperature has
no role in the dynamics of granular particles. Due to dissipation and athermal nature, a granular
system shows distinct properties from usual solids, liquids, and gases [3]. For example, a sand
pile at rest with a slope less than the angle of repose produces solid like behavior due to static
friction. Also, the flow of dry sand through the narrow neck of a sand clock is an example of
liquid-like behavior. Low-density granular gases appear in sand storm, dust, and smoke etc. The
flow of granular matters is important from the industrial application point of view. For example,
pharmaceutical industries rely on the processing of powder and pills. In agricultural industries
and food processing industries, seeds, grains, and food stuff are transported and manipulated.
Understanding the dynamics of granular matters has importance in studying the early stage
evolution of stars, galaxies, and astrophysical dust [4]. Recently, Brilliantov et al. described
the size distribution of particles in Saturn’s ring using the concept of granular aggregation and
fragmentation [5].



Theoretically, the problem of granular gases has been extensively studied in past two
decades [6]. In the leading theoretical approach, a granular gas is modeled by a system of
inelastic hard spheres, where the collision between a pair of spheres is characterized by a constant
coefficient of restitution less than unity [7, 8]. One of the most interesting problem studied within
that approach is cooling and pattern formation in density and velocity fields. Particles in the
system loss their kinetic energy due to the inelastic binary collisions. In the early stage of
evolution, velocity remains random and density remains uniform. However, system cools due
to inelastic collisions, is known as homogeneous cooling state (HCS). Haff’s law describes the
decay of kinetic energy in HCS [9]. However, later in time, the density field becomes unstable
to fluctuations and the system enters an inhomogeneous cooling state (ICS), where the particle-
rich clusters are formed and grow. Temperature of the system shows algebraic decay. Non-
unified results are reported in literature for velocity distribution in the ICS, e.g., power laws,
stretched exponential, etc., have been reported in various studies [6]. Puri et al. studied the
complex pattern formation dynamics of density and velocity fields by invoking analogies from
studies of phase ordering dynamics. The growth kinetics of the clusters in density and velocity
fields have also been studied [10, 11]. Recently, Schwartz et al. presented detailed study of
pattern formation in two dimensional granular gases where energy dissipation is modeled by
solid friction [12].

In the case of dense flows, many particles interact among each other simultaneously and
stay in prolonged contact. Thus, the concept of collision is not meaningful in this case. In
case of granular gases cooling by inelastic collisions, it is known that evolution of the density,
velocity, and granular temperature fields is well described by the macroscopic hydrodynamic
equations [13]. However, finding a macroscopic continuous description of such dense granular
systems has been an important and challenging issue in the physics of granular flows. In
this paper, we consider the solid friction as the only dissipation mechanism in granular gases.
Although we believe that frictional dissipation plays significant role in dense systems, we apply
it here to gaseous granular matter, as the only mechanism of mechanical energy dissipation, to
study its effect on the cooling properties of such dilute systems. Also, we present results for the
phase ordering velocity fields and the corresponding growth dynamics. This work will serve also
as a reference point for future work on denser systems.

This paper is organized as follows. In Sec. 2, we describe details of our molecular dynamics
simulation. In Sec. 3, we present detailed numerical results. Finally in Sec. 4, we conclude with
a brief summary and discussion.

2. Details of Molecular Dynamics Simulation
In our molecular dynamics model simulation, we consider a system of particles confined in a
cubic box of size L3. Particles are spherical in shape, identical in size, and of equal mass m.
Any two particles with position vectors ~ri and ~rj interact with via a two-body potential with
a hardcore of diameter R1 and a thin shell repulsive potential. To be specific, we consider the
following form of interaction potential:

V (r) =


∞ : r < R1

V0
(r−R2)2

(r−R1)2
: R1 ≤ r < R2

0 : r ≥ R2

(1)

where r =| ~ri − ~rj | is the separation between the two particles, V0 is the amplitude of the
potential, has the dimension of potential energy and R2 − R1 < R1, is the typical thickness of
the thin repulsive shell. Here, Eq. (1) is to be taken only as a model of repulsive potential that
rises steeply from zero at the outer boundary of the shell to infinity at the hardcore. The normal
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Figure 1. Two-dimensional (x-y plane) cross section of evolution snapshots of density field at
different times, as mentioned. Here, we plot the center of the particles whose z coordinate lies
in the range z ∈ (31.4, 32.6). The number of particles in the actual system is N = 400000 and
friction coefficient µ = 0.10. The size of the system is V = 923. Void spaces in the density field
represents particle free regions.

force applied by particle i to particle j is given by

~Fn
ij(r) = −~OV (r), (2)

where the gradient is taken with respect to rj . The corresponding solid friction force is given by

~F f
ij(r) = µ | Fn

ij |
~v1 − ~v2
| ~v1 − ~v2 |

, (3)

where ~vi and ~vj are the linear velocities of particle i and particle j respectively. Eq. (3) reduces
to well known Coulomb’s friction force when the thickness of the repulsive shell tends to zero. In
this case, the normal component of relative velocity goes to zero and the frictional force becomes
purely tangential to the normal force. For simplicity, we did not consider rotational motion of
the grains. We use the following units for various relevant quantities: lengths are expressed in
units of R1, temperature in V0/kB and time in

√
mR2

1/V0. For the sake of convenience and
numerical stability, we set R1 = 1, R2 = 1.1, V0 = 10, kB = 1 and m = 1. We implemented the
standard velocity Verlet algorithm [14] to update positions and velocities of MD simulations.
The integration time step is ∆t = 0.0005. The granular gas consisted of N = 400000 particles
confined in a 3D box with periodic boundary conditions. We consider two different friction
coefficients µ = 0.10 and 0.15. The volume fraction is ρ ≈ 0.269, which corresponds to number
density φ ≈ 0.514. This means that the box size is L = 92.

We initialize the system by randomly placing particles in the simulation box, such that there
is no overlap between the cores of any two particles. We assign equal velocity to all the particles
but the velocity vector points in random directions so that

∑N
i=1 ~vi = 0, i.e., we fix the centre

of mass velocity equal to zero. The system is allowed to evolve till t = 50 with µ = 0, i.e., the
elastic limit. The system is relaxed to a uniform density state and the velocity follows Maxwell-
Boltzmann (MB) velocity distribution, which serves as the initial condition (at t = 0) for our
MD simulation of inelastic spheres with µ 6= 0.

3. Numerical Results
At t = 0, we start with the homogeneous initial condition for density and velocity fields. Particles
dissipates their kinetic energy due to frictional interaction with µ 6= 0. In Fig. 1, we show the
evolution snapshots of the density field for µ = 0.10. Details are given in the figure caption.
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Figure 2. Evolution snapshots of the coarse-grained velocity field in the x-y plane at different
times, as mentioned for z = 32 layer. The coarse-grained system size is 643. For the sake of
clarity, we only plot 482 of z = 32 layer.

At early times, the density remains roughly homogeneous. However, at later times, the
formation of clusters is observed. This cluster formation can be explained as follows. Consider
some fluctuations in the homogeneous phase of the density field. Particles in the high-density
regions lose more energy than those in the low-density regions. Thus the effective temperature
and hence pressure are lesser in the clustered phase than those in the homogeneous phase. This
gradient of pressure drives particles from low-density to high-density regions, increasing the
density fluctuations. At the late stage, the system becomes sluggish due to the dissipation of
energy.

At the early stage of evolution, the velocity field remains random. However, at the late
stage, local correlation builds up. Due to frictional interaction among the particles, the normal
component of relative velocity is dissipated, and the tangential component of relative velocity
remains unaltered causing the local parallelization of velocities of two interacting particles. In
Fig. 2, we plot the two dimensional cross-section of the coarse-grained velocity field at different
times in the x-y plane. We divide the system into non-overlapping cubes of size 1.43753 and
the average value of velocity is calculated in each cube. The direction of the average velocity
is plotted as an arrow starting at the center of each square, using x- and y- components of the
velocity. The magnitude of the velocity in each cube is represented by a shade of gray scale.
Darker the shade of gray smaller is the velocity. Void spaces in the velocity field are the particle
free regions of density field.

We studied ordering in velocity field by invoking analogies from phase ordering kinetics with
vector order-parameter field [15, 16, 17]. We introduce an order-parameter ~v(~r, t), which is the
normalized average velocity in each cell, i.e., we only take the direction of average velocity. This
is analogous to the vector order-parameter of dynamical X-Y model in three dimensions [18]. The
morphology of clustering is studied by using equal-time correlation function Cvv(r, t), defined as
follows

Cvv(r, t) =
[
〈~v(~R, t) · ~v(~R+ ~r, t)〉 − 〈~v(~R, t)〉 · 〈~v(~R+ ~r, t)〉

]
, (4)

where r is the distance between the two points and angular brackets represent the average over
different initial conditions [15, 19]. We calculate the characteristic length scale of ordering Lv(t)
from Cvv(r, t). It is defined as the distance at which correlation decays from 1(at r = 0) to 0.5.
The variation of average domain size Lv(t) vs. t for different µ’s are shown in Fig. 3. Details
are given in the figure caption. Line with growth exponent α = 1/3 in Fig. 3, corresponds to
growth law for plug formation in dense granular flow [12].
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Figure 3. Time-dependence of the charac-
teristic length scales Lv(t) of ~v(~r, t)-field for
ρ ≈ 0.269 and for different µ, as mentioned.
Solid line with exponent 1

3 is shown, corre-
sponds to growth law predicted in the context
of plug formation in dense granular flow.

If the clustering is characterized by a single length scale Lv(t), Cvv(r, t) shows dynamical
scaling given by

Cvv(r, t) = gv

[
r

Lv(t)

]
, (5)

where gv(x) is the master function and x is the time independent scaling variable. Similarly, we
calculate structure factor Svv(k, t), which is defined as the Fourier transform of the correlation
function Cvv(r, t) as follows

Svv

(
~k, t
)

=

∫
d~rei

~k.~rCvv(~r, t), (6)

at wave vector ~k. The corresponding scaling form for Svv(k, t) is given by

Svv (k, t) = Ld
vS̃vv [kLv(t)] , (7)

where S̃vv(p) is the scaling function, d is the spatial dimensionality and p is the scaling
variable [15, 19]. In Fig. 4(a), we plot Cvv(r, t) vs. r/Lv(t) at different times, as mentioned.
We see that numerical data for different times are indistinguishable, which confirms dynamical
scaling of ordering. In Fig. 4(b), we plot Svv(k, t)L−d

v vs. kLv(t) at different times, denoted by
the symbols indicated. In the limit k → ∞, Svv(k, t) decays as k−6, following the generalized
Porod’s law as S(k, t) ∼ k−(d+n) with spatial dimensionality d = 3 and the number of order
parameter components n = 3 [18, 20]. This power law decay of Svv(k, t) implies scattering from
vortex like defects in the velocity field.

4. Conclusion
Let us conclude this paper with the summary and discussion of our results. We carried out large-
scale molecular dynamics (MD) simulation to study the cooling of granular gases, where friction
among the interacting particles is considered as the only source of dissipation. At the early
stage of evolution, density field remains uniform and velocity field remains random. However, at
later times, as the system cools, clustering in density and local ordering in velocity fields have
been observed. The equal-time correlation function for velocity field show dynamical scaling,
indicating the morphological similarity of ordering. In the limit k → ∞, structure factor tails
for velocity field follows Generalized Porod’s law : Svv(k, t) ∼ k−(d+n), with d = 3 and n = 3.
The average domain size in velocity field follows power law growth: Lv(t) ∼ t1/3, proposed in
the context of plug formation in dense granular flow.
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Figure 4. Scaling plot of spherically averaged correlation functions Cvv(r, t) and structure
factors Svv(k, t) of coarse-grained ~v(~r, t)-field at different times, denoted by the indicated
symbols. The coarse-grained system size is 643 and all results are averaged over ten independent
runs for µ = 0.10 and ρ ≈ 0.269. (a) Plot of Cvv(r, t) vs. r/Lv(t) at different times, as mentioned.
Numerical data at different times are indifferent, which confirms dynamical scaling. (b) Plot of
Svv(k, t)L−d

v vs. kLv(t) on log-log scale. Numerical data at different times scaled appropriately,
indicate morphological similarity. The line labeled with k−6 represents the generalized Porod’s
law with d = 3 and n = 3. Rest of the details are same as Fig. 1.
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