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Abstract. The consistent relativistic energy approach to the finite Fermi-systems (atoms and 

nuclei) in a strong realistic laser field is presented and applied to computing the multiphoton 

resonances parameters in some atoms and nuclei. The approach is based on the Gell-Mann and 

Low S-matrix formalism, multiphoton resonance lines moments technique and advanced 

Ivanov-Ivanova algorithm of calculating the Green’s function of the Dirac equation. The data 

for multiphoton resonance width and shift for the Cs atom and the 
57

Fe nucleus in dependence 

upon the laser intensity are listed. 

1.  Introduction 

At the present time physics of multiphoton phenomena in atoms, molecules and nuclei has reached a 

great progress that is mostly stimulated by a development of new laser technologies and perspectives 

of new impressive applications (see Refs. [1,2]). The appearance of the powerful laser sources 

allowing to obtain the radiation field amplitude of the order of atomic field in the wide range of 

wavelengths results to systematic investigations of the nonlinear interaction of radiation with atomic 

and nuclear systems [1-16]. At the same time a direct laser-nucleus interactions traditionally have been 

dismissed because of the well known effect of small interaction matrix elements. Some exceptions 

such as an interaction of x-ray laser fields with nuclei in relation to alpha, beta-decay and x-ray-driven 

gamma emission of nuclei have been earlier considered. With the advent of new coherent x-ray laser 

sources in the near future, however, these conclusions have to be reconsidered. From the design report 

(look table II in Ref.[2]) for SASE 1 at TESLA XFEL and parameters for current and future ion beam 

sources, the signal rate due to spontaneous emission after real excitations of the nuclei can be 

estimated. For nuclei accelerated with an energy resolution of 0.1% such that 12.4 keV photons 

produced by SASE 1 become resonant with the E1 transition in a whole number of nuclei (for 

example, 
153

Sm, 
181

Ta,  
223

Ra, 
225

Ac , 
227

Th etc) [9]. It means that the resonance condition (~, 

where  is a typical level spacing,  is a laser frequency) is fulfilled [9-12]. The coherence of the 

laser light expected from new sources (TESLA XFEL at DESY) may allow to access the extended 

complex coherence or interference phenomena. In particular, in conjunction with moderate 

acceleration of the target nuclei it allows principally to achieve realization of multi-photon 

phenomena, nuclear Rabi oscillations or more advanced quantum optical schemes in nuclei [9,10].  
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 The interaction of atoms with the external alternating fields, in particular, laser field, has been the 

subject of intensive experimental and theoretical studies (see, for example, Refs. [1-27]). A definition 

of the k-photon emission and absorption probabilities and atomic levels shifts, study of dynamical 

stabilization and field ionization etc are the most current problems to be solved. At the present time, a 

progress is achieved in the description of the processes for atoms interacting with the harmonic 

emission field [9, 14-17]. But in a realistic laser field the corresponding processes differ significantly 

from the ones in a harmonic field.  A substantial complexity is provided by the photon-correlation 

effects and an influence of the laser pulse multi-mode features. Notably, a number of different 

theoretical approaches have been developed in order to give adequate description of the atoms in a 

strong laser field. The corresponding methods are the standard perturbation theory (surely for low 

laser filed intensities), the Green’s function method, the density-matrix formalism, time-dependent 

density functional formalism, a direct numerical solution of the Schrödinger and/or Dirac equation, 

multi-body multi-photon approach, the time-independent Floquet formalism etc. (see [1,14-28] and 

references therein). The effects of the different laser line shape on an intensity and spectrum of 

resonance fluorescence from a two-level atom are studied in Refs. [1-5,15-17,19-23].  

 Earlier, a relativistic energy approach to studying the interaction of atoms with a realistic strong 

laser field, based on the Gell-Mann and Low S-matrix formalisms, has been developed. Originally, 

Ivanov has proposed an idea to describe quantitatively a behavior of an atom in a realistic laser field 

by means of studying the radiation emission and absorption lines and further the consistent theory of 

interaction of an atom with a Lorentzian laser pulse has been developed in Refs. [19-22]. The theory 

has been applied to computing the multi-photon resonance shifts and widths in hydrogen and caesium 

[20]. The consistent theory of interaction of an atom with the Gaussian and soliton-like laser pulses 

has been developed in Refs. [24-27], where the corresponding calculation results are listed.  

 Here we present an advanced generalized relativistic energy approach to computing multiphoton 

resonances parameters in the finite Fermi-systems (as example, atom of Cs and nucleus of Fe) in a 

strong laser field with using the Green’s function technique for computing sums in expressions for a 

multiphoton resonance line moments.  

2.  Relativistic energy approach to atom in a strong laser field: Multiphoton resonances  

The relativistic energy approach in the different realizations and the radiation lines moments technique 

are presented in Refs. [17-27] and here we are limited only by presenting the master moments. In the 

theory of the non-relativistic atom there is a convenient field procedure for computing the energy 

shifts E of degenerate states, which is connected with the secular matrix M diagonalization. In 

constructing M, one could apply the known Gell-Mann and Low adiabatic formula for E (look details 

in Refs. [19-22]. In relativistic theory, the Gell-Mann and Low formula E is connected with 

electrodynamical scattering matrice, which includes interaction with as a laser field as a photon 

vacuum field. In relativistic theory the secular matrix elements are already complex in the second 

perturbation theory (PT) order and their imaginary parts are connected with radiation decay 

possibility. The total energy shift is usually presented in the form: E = ReE + i ImE, Im E = -P/2, 

where P is the level width. Spectroscopy of an atom (nucleus) in a strong laser field is determined by 

position and shape of the radiation emission and absorption lines. The lines moments n are strongly 

dependent upon the laser pulse quality: intensity and mode constitution. We describe the interaction 

“nucleus-laser field” by the Ivanov potential [20]: 

                            V(r,t)= V(r)  d f(  0 )  cos
n



 ( 0t+ 0 n).                               (1) 

 Here 0 is the central laser radiation frequency, n is the whole number. The potential V represents 

the infinite duration of laser pulses with known frequency . The function f() is a Fourier component 

of the laser pulse. For example, we consider  a pulse with the Gaussian shape. A case of the Lorentzian 

shape has been earlier studied [20,21]. A case of the Gaussian and soliton-like shape is studied in Refs. 

[24-27]. The master program results in the calculating an imaginary part of an energy shift ImE (0) 



 

 

 

 

 

 

for any atomic level as the function of the central laser frequency 0. An according function has the 

shape of the resonance, connected with the transition -p with absorption (or emission) of the “k” 

number of photons. For the resonance we calculate the following values [19-21]:  

 

                                                   p|k) =  d Im E () (  - p / k) / N,                                  (2a) 

                                                     m =   d Im E () ( - p / k)
m
 / N,                                    (2b) 

where  dImE is the normalizing multiplier; p is position of the non-shifted line for  transition -

p, (pa|k)  is the line shift under k-photon absorption; p=p+ kp|k). The first moments 1, 2 

and 3 determine an atomic line centre shift, its dispersion and asymmetry. In order to compute the 

values m, one should get an expansion of E to the PT series [20]: E =  E
(2k)

 (0). Here one may 

use the known Gell-Mann and Low adiabatic formula for E and the further representation of the S- 

matrix in the form of the PT [20]: 
 

                                          E (0) =  lim
 0

  a
k k kn1 2 ...

 (k1, k2,...,kn),                                            (3) 

                                  I (k1, k2,...,kn) = 
j 1

(-1)
j
 d



0

t1... d
tm






1

tj  | V1V2... Vm | ,                        

 

Vj = exp (iH0 tj ) V(rtj) exp (-iH0 tj ) exp (tj). 

 

 Here H is the atomic hamiltonian, a (k1, k2,...,kn) are the numerical coefficients. The structure of 

matrix elements S
(m)

 and integral technique are in details described in [17-23]. The corresponding 

expressions for the Gaussian laser pulse are as follows [24,25]: 
   

                          (p | k) = { / (k + 1)k} [ E(p, p/k) - E(, p/k)],                              (4) 

 

2 = 
2
/k                                                                                                                                                      

 

3 = {4
3
 / [k (k + 1)]} [ E(p, p/k) - E(, p/k)], 

 

                               E(j, p/k) = 0,5 V
pi

 jpi Vpij [ 1

 
jp pi

k /

 + 1

 
jp pi

k /

]                            (5) 

               

where the summation in (5) is over all atomic states. Note that these formulas for the Gaussian pulse 

[24,25] differ from the expressions for Lorentzian shape laser pulse [19-22]. For the soliton-like pulse, 

it is necessary to fulfil the numerical calculation or use some approximations to simplify the 

expressions [27].  Earlier to determine the the PT second order sum in (5) in different calculations of 

atomic and meso-atomic characteristics [28-36], it has been applied the effective Ivanov-Ivanova 

technique [18]. The alternative approach can be provided by method of the Green’s function of the 

Dirac equation (look below). The corresponding computational procedure includes solving an ordinary 

differential equations system for above mentioned functions and integrals. The scheme of computing  

electron c wave functions within the relativistic many-body PT with the Dirac-Kohn-Sham zeroth 

approximation, the corresponding technique of computing all  matrix elements in the expressions (2,5) 

and other details are presented in Refs. [20-30]. In all numerical calculations the PC “Superatom-

ISAN” package is used.  

 Further it is important to underline that above presented expressions remain the same for treating 

the multiphoton resonances in a nucleus in a strong laser field, however there is some difference in 

comparison with an atomic case. It is obviously connected with calculating the corresponding matrix 



 

 

 

 

 

 

elements in formulae for resonance parameters with substituting the nuclear wave functions and some 

other details. In a modern theory of a nucleus there is sufficiently great number of the different models 

for generating the proton and neutron wave functions (c.f. [37,38]). At present time, it is acceptable 

that a quite adequate description of the nuclear systems is provided by the relativistic mean-field 

(RMF) and other similar models [37,38]. As an alternative approach one could use the advanced shell 

models based on the effective Dirac-Wood-Saxon type Hamiltonian [26,39]. This model [39] has been 

used in our  work.  

3.  Method of the Green’s function of the Dirac equation with complex energy: Advanced 

Ivanov-Ivanova computational algorithm  

The details of the method of computing the sum in (5) are presented in Refs. [18,20,23,27]. The 

fundamentals of the method have been developed by Ivanov-Ivanova  et al (c.f. [18-20]). The 

advanced version of this approach has been presented in Ref. [23].  Here we are limited only by the 

principal points of an  advanced computational algorithm [23]. As usually, the radial Dirac equations 

can be written as follows (in the Coulomb units):  

 

                                                                ;~/1  gVrff                                    

 

                                                                    ;~/1  fVrgg   

 

  ;~ 2   irVV                                                       (6) 

 

where  rV  is the potential of a nucleus, ~ =Z ( is the fine structure constant), f  and g
 
are the 

Dirac equations  solutions. We are interested by the case, when the potential is regular for 0r . It is 

easy to show (c.f. [18]) that for such a potential the solutions of two types (regular and non-regular at 

0r ) exist for each value of  ξ  and  χ :   

for  χ<0 

       f ~ 
1

r ,   g ~ 


r ,  f
~

~ 


r , g~  ~ 1 
r ,   

 

for  χ>0 

                                            f ~ 


r ,  g ~ 
1

r ,  f
~

~ 
1 

r , g~  ~ 


r .                                   (7)  

 

 The regular solution  gf ,  at 0r  is simply defined by the condition (6) with the accuracy to a 

normalization. At the same time the singular solutions are not defined by these conditions.    

 For large values of   the functions (7) have a strong degree dependence at 0r  that is a reason 

of the known computational difficulties during the numerical integration of the Dirac equations. At 

large   the radial functions F and G vary rapidly at the origin of co-ordinates (c.f.[19,28]): 

 

                                                                   
   

222

1,

z

rrGrF



 

                                                    (8)                                                                

 

and further it is convenient to introduce the new functions isolating the main power dependence:  

 

            ;,,
1 

 rgfGF  
   



 

 

 

 

 

 

                                                                    .~,
~~

,
~ 1




rgfGF                                                       (9)  

 

 The Green’s function is a combination of the Dirac equation modified (the power dependence is 

separated) fundamental solutions:   

 

    ;~;~ FVrGGGVrFF     (10a) 

 

                                           .
~~~~

;
~~~~

FVrGGGVrFF   
                   

(10) 

 

 The functions (F, G) represent the first fundamental solution, which is regular for 0r  and 

singular for r . Any combination    GFCrGF ,
~

,
~ 2 

  satisfies to above written equations for 

 GF
~

,
~  and represents singular solution at zero [18,19,23]. The right chosen combination  GF


,  for 

the single value of the mixing coefficient C (regular for r ) is second fundamental solution 

 gf


, . Finally, the Green’s function electron function is a four-component matrice with the functions 

(F, G) and ),(


GF , which are the Dirac equations solutions with account of the corresponding 

asymptotic conditions. Further one can obtain from Eqs. (10) that for r : 

 

        GF , ~ ;exp Ar   GF


, ~  ;exp Ar      .~~ 2
1

222   A                   (11) 

 

 As the bi-linear combinations of the Dirac function components are presented in the Green’s 

function, only their relative normalization is important. It is determined by the known “Wronscian” 

condition ( .1 GFGFW


). The electron radial Green’s function is the four component matrice as 

follows:  

 

                                   
       

       
,,|21 


















rGrGrFrG

rGrFrFrF
ErrG 



                                 (12) 

 

where   rr  is more (or less) value of ;, 21 rr  the functions  GF ,  and  GF


,  satisfy the Dirac 

equations (10), their asymptotical conditions (11) and the “Wronscian” normalization  condition. The 

corresponding computational procedure, which includes solving an ordinary differential equations 

system for relativistic wave functions, computing all matrix elements and other details can be found in 

Refs. [23-28,39]. 

 

4.  Some results and conclusions 

Below we present the calculation results for the three-photon transition 6S-6F (p- transition ) in the 
133

Cs atom (wavelength 1,059 m). The detailed experimental studying the multi-photon processes in 

Cs atom has been fulfilled in Ref. [15]. In this paper it has been experimentally studied a statistics of 

the laser radiation and there have been measured the characteristics of the multi-photon ionization. 

According to Ref.[15], the multiphoton line shift is linear to respect to a laser intensity (the laser 

intensity is increased from 1.4 to 5.710
7
 W/

2cm ) and is equal (a case of the Gaussian  multi-mode 

laser pulse): (p |k)=bI with b=(5.6±0.3) cm
-1

/GWcm
-2 

 (b is expressed in terms of energy of the 

three-photon transition 6S-6F). The corresponding shift for the coherent (one-mode) laser pulse is 

equal as follows [15]:  0(p|k)=aI, a=2 cm
-1

/GWcm
-2

.The theoretical values, obtained within the 



 

 

 

 

 

 

relativistic energy approach [22,24,25] are as follows: i). (p|k)=bI with  b=5.8 cm
-1

/GWcm
-2 

 for 

the Gaussian multi-mode pulse (chaotic light); ii). 0(p |k)=aI , a=2.1 cm
-1

/GWcm
-2

 for the 

coherent one-mode pulse. The corresponding theoretical values, obtained in this work, are as follows: 

i). (p | k) =bI, b=5.62 cm
-1

/GWcm
-2

 for the Gaussian multi-mode pulse;  ii). 0(p |k)=aI, 

a=2.03 cm
-1

/GWcm
-2 

for the coherent one-mode pulse. One should note that the radiation line shift for 

the multi-mode pulse is significantly larger (in ~ 3 times) than the corresponding shift for the single-

mode pulse. In fact the resonance line shift is enhanced by the photon-correlation effects. In figure 1 

we present the results of computing the multi-photon resonance width for transition 6S-6F in the atom 

of Cs (wavelength 1059nm) in dependence upon a laser intensity. We use the following denotations: 

experimental data-  (Grance ; Lompre etal, 1981); theory – by Glushkov-Ivanov (the energy approach 

plus method of the differential equations; continuous lines) L2 (1-mode Lorentzian pulse), 2, 4  - 

multimode Gaussian laser pulse (the linewidth  0.03, 0.08 cm
-1

); this work: the dotted lines L1 (the 

Lorentzian pulse), 1, 3, 5, 6, 7 - multimode Gaussian laser pulse (the linewidth  0.03, 0.055, 0.08, 

0.115, 0.15 cm
-1 

correspondingly).  In Ref. [15] there are presented experimental data for laser pulse of 

the Gaussian shape with line band respectively 0.03cm
-1

, 0.08cm
-1

, 0.15cm
-1

. 

 

Figure 1. The results of computing the multi-photon resonance  width for transition 6S-6F in the atom 

of Cs (wavelength 1059nm) in dependence upon laser intensity: experimental data-  (Grance,  

Lompre et al [15]); theory – Glushkov-Ivanov (the energy approach plus method of the differential 

equations; continuous lines) L2 (1-mode Lorentzian pulse), 2, 4  - multimode Gaussian laser pulse 

(the linewidth  0.03, 0.08 cm
-1

) [20,24]; This work: the dotted lines L1 (the Lorentzin pulse), 1, 3, 

5, 6, 7 - multimode Gaussian laser pulse (the linewidth  0.03, 0.055, 0.08, 0.115, 0.15 cm
-1 

correspondingly).    

In general there is a physically reasonable agreement between theoretical and experimental data. The 

analysis shows that the shift and width of the multi-photon resonance line in atomic system for the 

multimode laser pulse are greater than the corresponding resonance shift and width for the one-mode 



 

 

 

 

 

 

laser pulse. This fact is entirely corresponding to the experimental result [15]. From physical point of 

view it is provided by action of the photon-correlation effects and influence of the laser pulse 

multimodity (c.f.[14,15,20-27]).  

 Further let us present the first results of estimating the multiphoton resonance parameters in the 
57

Fe nucleus in a super strong laser field. In order to estimate the corresponding matrix elements on the 

nuclear wave functions it was used the shell model based on the effective Dirac-Wood-Saxon type 

Hamiltonian, which contains  the Bloumkvist-Wahlborn nuclear potential [39]. According to Ref. [40], 

the nuclear multiphoton transitions take a place in 
57

Fe nucleus subjected to radio-frequency 

electromagnetic field 0=30MHz. This picture was experimentally observed in the Mössbauer spectra 

of 
57

Fe nuclei in Permalloy by Tittonen et al [41]. Really, the eight transitions are possible between the 

four hyperfine substates of the 14.4 keV excited level e and the two substates of the ground state g in 

the radio-frequency magnetic field [16]. If the static magnetic hyperfine splitting of the ground and 

excited states are respectively g>0 and e>0, the transition frequencies corresponding to forbidden -

ray transitions are (Ee-Eg)/h3g/2g/2, where Ee, Eg  are respectively the energies of the 14.4-keV 

and ground states of the 
57

Fe nucleus in an absence of any external field. The estimates  of the 
57

Fe 

resonance shift in dependence upon the mean laser intensity are as follows: I=10
25

W/cm
2
, =510

-12 

keV, I=10
28

W/cm
2
,  =10

-9 
keV. The corresponding asymmetric nature of the multiphoton resonance 

line in 
57

Fe nucleus is naturally explained within the presented theoretical approach. 
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