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Abstract. In this method, we propose computational technique of Screw-Antisymmetric Periodic Boundary Condition (SAPBC Method) on local, non-cluster update algorithms of Isotropic square lattice Ising model of Monte Carlo Simulations, as well. The SAPBC Method, actually, is an extended mixed method of Screw (helical) and Antisymmetric periodic boundary conditions beyond connection from of nearest neighbor spin of the main lattice to even far away block of the outer (foreign) neighbor spin arrays. Here, meanwhile of description of geometry exact details of method and way of spin interaction, have applied to critical slowing down in order to achieve more convergence of spin correlation at critical temperature. Actually, in general, at critical temperature algorithms performed by using SAPBC Method have faster correlation and much shorter autocorrelation time than algorithms performed by using PBC Method. We will also see that Autocorrelation function for the typewriter Metropolis algorithm was found to be zero at high temperatures. For low temperatures it fell to zero and stayed there. The SAPBC Method also confirms and consists with the law of the spatial correlation length with its dynamical critical exponent. Therefore, it can be used as a trenchant method applied to boundary conditions of Monte Carlo simulation problems extending on a variety of other models such as XY-Pots-Heisenberg model and also cluster algorithms such as Wolf, Swendsen-Wangas, Hoshen-Koppelman as well.
1. Introduction

The dynamics of equilibrium or near equilibrium system is slow, at very low temperatures the dynamics is slow; many a times the system gets stuck in a metastable state which drastically slows down the dynamics and Monte Carlo simulations suffer from autocorrelations. There exists another phenomenon for which the Metropolis/Glauber dynamics is very slow, when the system is close to a critical state. This is called critical slowing down; an important issue in the statistical mechanics of continuous phase transition. The Metropolis Monte Carlo method works very well in simulating the properties of the 2-D Ising model. However, close to the Curie temperature Tc, the simulations suffer from critical slowing down, and more efficient algorithms are needed. The Metropolis algorithm is a local algorithm, i.e., one spin is tested and flipped at a time. Near Tc the system develops large domains of correlated spins which are difficult to break up. So the most likely change in configuration is the movement of a whole domain of spins. But one Metropolis sweep of the lattice can move a domain at most by approximately one lattice spacing in each time step. The advantage of this simple algorithm is its flexibility which allows the application to a great variety of physical systems. The great disadvantage, however, is that this algorithm is plagued by large autocorrelation times, as most other local update algorithms (one exception is the over-relaxation method (Creutz 1987, Adler 1988, Neuberger 1988, Gupta et al. 1988)[1].                              
 Since correlation length diverges at criticality, the Metropolis algorithm thus severely suffers from critical slowing down. Because of that the autocorrelation times become large near the critical temperature of the infinite system. Near the critical temperature, the relaxation time becomes very large and can be shown to diverge for an infinite system.The correlation length diverges at the critical temperature:      
                                                                 

        (1)
Which accounts for long range spin correlations as T approaches Tc .Quantity is the relaxation time, which is the time scale over which the system approaches equilibrium. If  A (t ) is a quantity which relaxes towards its equilibrium value  A ,  the relaxation time can be theoretically as:


             (2)

Near the critical temperature, the relaxation time becomes very large and can be shown to diverge for an infinite system:

             (3)

Here z is the dynamical critical exponent associated with the observable A. This phenomenon is called critical slowing down[2-8].In the 2-D Ising system, the correlation length    becomes very large, and the  correlation time  [9]  , which measures the number of steps between independent Monte Carlo configurations behaves like.


                                      (4)
The time autocorrelation function:


                     (5)


Where, n labels the Monte Carlo time step. If Monte Carlo steps separated in time by k  intermediate steps are truly uncorrelated then,  should be zero (i.e., of O(1/ √ ) where M is the number of steps used in computing the averages < >,If the correlation function decays exponentially[9]:

                                                                                (6)

Then ,the exponential correlation time can be computed as the average:



     (7)
If the decay is exponential, then:


                            (8)

Which is called the integrated correlation time. The formulas above suggest that it is useful to normalize the autocorrelation function by its value at t = 0:


                                            (9)






At the Curie temperature, some observables like the heat capacity per spin and magnetic susceptibility per spin become divergent (infinite) in the thermodynamic limit of an infinite system. These critical divergences are due to long range correlations between spins. Consider two spins,  at the origin of coordinates and   at some other lattice site labeled by the index n. The correlation between the pair of spins is defined to be .If the two spins are uncorrelated then this average will be zero or very small. At T = 0 the spins are all lined up and so: 


        (10)





However, this is a somewhat trivial correlation because flipping will hardly affect  if it is not a neighbour of  .Near, the situation is very different: the spins are constantly changing, but not independently; there are large domains (droplets) of parallel spins which persist for long periods of time. Thus, spins far apart from one another are strongly correlated. At high temperatures, the spins fluctuate rapidly but almost independently of other spins.


2. Importance sampling and local update algorithms of Monte Carlo Simulation

2.1. Metropolis Algorithm[10]

In this algorithm, propose locally a flip of a single spin and accept this update with probability below:


      (11)

With energies E before and E′ after the spin flip.
Choose new spin direction at random. This update algorithm is not the most efficient one as special with the old boundary conditions.

2.2.   Heat-Bath Algorithm


Test all spin states of a single spin in the heat-bath of its (fixed) local neighbors (4 on a square lattice, 6 on a simple-cubic lattice with nearest-neighbor interactions): 


          (12)
Selecting spins as for Metropolis alg. (random, sequentially, . . . ) But , Only in special cases easy to generalize to continuous degrees of freedom.
2.3.  Glauber Algorithm

1.   This algorithm is conceptually similar to Metropolis algorithm,: 
In this here, propose locally a flip of a single spin and accept this update with probability:

        (13)
2.   With energies E before and E′ after the spin flip. Only for this update algorithm the Monte Carlo (pseudo) dynamics can be calculated analytically.


Structure of the Monte Carlo program
 
There are Traversal order in Monte Carlo program in which order should we go through the points on the lattice. In principle this is (largely) up to you, except in some special cases. The common orders are: 

3.1. Typewriter ordering: Go through the sites row-by-row, from left to right. This program recommended for standard uses. However, breaks detailed balance for Ising model + Metropolis update, at least in 1 dimension. 

3.2. Random ordering: pick the site at random. Good, but in practice computationally slower than typewriter. Used in some real-time calculations.

3.3. Checkerboard ordering: divide the sites into black and white sets (x+y even/odd), as in the checkerboard. Since each black site has only white neighbors and vice versa, we can update all of the black sites independently from each other while keeping white sites fixed. Repeat for white sites. 


Definition of model and boundary condition

We consider the isotropic Ising model with J couple interaction [11-14]. They interact with foreign- neighbor of spins. The Hamiltonian reads:


(14)

Where,  is the spin at site (x) and K=L. In most cases, we take all couplings to be
Positive, i.e. ferromagnetic. In the Monte Carlo simulations, systems with (KL) spin, subject to Screw-Antisymmetric   Periodic Boundary Condition (SAPBC Method), are analyzed, where (K,L) corresponds to the number of  spins in( x,y-directions). The aspect ratio, r, is  defined by K=L.
In figures (1-6), comparison between kinds of different boundary condition have been done completely. 
We perform the spin interaction and Hamiltonian sentences for Ising model at different boundary condition. 
[image: ]

Figure1. Application of typical boundary conditions for the two dimensional  Ising model: (a)(left) periodic boundary; (b)(center) screw periodic; (c)(right) free edges [2-5].

[image: ]
Figure 2.  A profile of spin interaction and Hamiltonian sentences in the free boundary condition (FBC method) [2-5].

[image: ]
Figure3.  The  illustration  of  the  spins  interaction  and  Hamiltonian  sentences  in  the  periodic     boundary condition(PBC method) in a one-dimensional array.

[image: ]

Figure4. Representation of spins interaction array with Screw(helical) periodic boundary condition  SPBC Method for lattice N*N in one-dimensional.


[image: ]

Figure5. The illustration of the spins interaction with different boundary condition in a one- dimensional array 3*3.(a): The periodic boundary condition method in a one-dimensional array 3*3(PBC) (b): Screw(helical) periodic boundary condition method in a one-dimensional array 3*3(SPBC) (c):the Screw(helical) periodic boundary condition (SPBC method )in a one-dimensional array 5*5(SPBC) .

[image: ]
Figure 6a. Sketch of the interactions in the anisotropic Ising model with N=100 of spins, which uses  SAPBC simulation techniques, according to the first sentence of Hamiltonianin(14). Here, the last spin in first row, Instead of link with the first spin in the second row according to SPBC method, which performed in (Figure1-b), is connected with the last spin in the ninth row (L-1) with a screw -antisymmetric approach. The first spin in the first row also connect with penultimate spin in the last row (L) on the main lattice (mother block).

[image: ]

Figure6b. Sketch of the interactions in the anisotropic Ising model with N=100 of spins, which uses SAPBC simulation techniques, according to the second sentence of Hamiltonianin(14). Here, the first spin in second row, Instead of link with the last spin in the first row according to SPBC method, which performed in (Figure1 - b), will be connected with the first spin in the tenth row (L) with a screw -antisymmetric approach. The second spin in the first row also will connect with the last spin in the last row (L) on the main lattice (the mother block).
[image: ]
Figure6c. Sketch of the interactions in the anisotropic Ising model with N=100 of spins, which uses SAPBC simulation techniques, according to the third sentence of Hamiltonianin (14).
Here, the second spin in the second row connect with the second spin in the tenth row (L) with a screw - antisymmetric approach. The third spin in the first row will connect with the first spin of the first row of outer (foreign) neighbor block of spin lattice. Actually in the situation, connection between Spins will be removed from the core lattice (the mother block). Then their interaction will easily be done with the first block of foreign- neighbors.
[image: ]Figure6d. Sketch of the interactions in the anisotropic Ising model with N=100 of spins, which uses SAPBC simulation techniques, according to the fourth sentence of Hamiltonian in (14).
Here, the third spin in the second row connect with the third spin in the tenth row (L)     with a screw - antisymmetric approach. The fourth spin in the first row will connect with the second spin of the first row of foreign neighbor block of spin lattice. Here, connection between Spins will be removed from the core lattice (the mother block). Their interaction will then be done with the first block of foreign- neighbors.




5. Simulation and Results

Autocorrelation function has been measured through expected statistical quantities which are done during Monte Carlo algorithm process. In this method, we consider the effect autocorrelation function [5, 11] as a division of statistical quantity at t th moment to its initial value. This method has been written with the method of Screw anti-symmetric periodic boundary condition (SAPBC Method). Spins are placed on a two dimensional lattice of L*L in which L is the number of spins in any dimension.
1000000 loops of Monte Carlo is used in this experiment. In Figure (8), autocorrelation function versus time has been done for different algorithms by using PBC Method. Clearly, the Metropolis update with typewriter ordering is the fastest of these algorithms tables (1, 2).The fluctuation of autocorrelation function for the Metropolis algorithm by using SAPBC Method is studied and is shown in Figure (8).



We have done simulation with L = 10, 50, 60, 90. According to equation (9), we describe the autocorrelation function as quantity of   (as is actually the value of the susceptibility in the t th point of Markov) for 500 consecutive Markov pointswith sizes of L = 10, 50, 60, 90.






As the size of lattice increases, its function correlation increased proportionally and autocorrelation time also become loner. This is due to in fact that autocorrelation time grows proportional to the spatial correlation length,   , equation(4) with a dynamical critical exponent  [9].Since, diverges at criticality, the Metropolis algorithm thus severely suffers from critical slowing down. Of course, in finite systemscannot diverge. Then  is replaced by the linear lattice size L, yielding  .
[image: ]

Figure7. The Comparison of Autocorrelation function versus time for different algorithm by using PBC Method.

Figure (7), Figure (8). Actually, in general, algorithms performed by using SAPBC Method have faster correlation than algorithms performed by using PBC Method.
[image: ]
Figure8. Autocorrelation function for Metropolis algorithm at Critical Temperature T= 2.28KT for various lattice magnitude L = 10; 50; 60; 90 by using SAPBC Method on 500 Markov Points.

The SAPBC Method also confirms and consist with the law of the spatial correlation length with its dynamical critical exponent figures (7, 8, 9, 10) and table (2). 
In figures (7,8,9,10), there has been done a relatively good comparison between autocorrelation function variations based on 600 Markov Point in three different temperature category:

 (T = 0.5KT, T=2.28KT,T=10KT) by using SAPBC Method, as well.

 By looking at the chart, we completely realize that in critical temperature (T=2.28KT) the correlation have slowly exponential decrease that is really expected (Equations 5, 6, 10) by using SAPBC Method. But in other temperatures T=0.5KT (low temperature) and T=10KT (high temperature), variation trend of correlation used to be completely different, figures (9, 10). 
In figure (8), the autocorrelation function for the metropolis algorithm at low temperature (T=0.5) performed by SAPBC method satisfying Equation (9) as well. Here, we also can see a similar situation in correlation between spins, as there is a sudden fall in correlation of data because of reducing the distance between points and then with the increase in time remained uncorrelated. For high temperature(T=10) only the first few data points were correlated and the rest were uncorrelated with their autocorrelation function fluctuating randomly about zero what have been done in PBC method too, Figure(8). In Figure (10), there is a comparison of fluctuation of autocorrelation function at different temperature (High temp, Critical temp &Low temperature) as well. We can easily see that autocorrelation function has the correlation at critical temperature with a slightly exponential decrease trend between points. The both of methods (PBC&SAPBC) have similar results on this issue that Autocorrelation function for the Metropolis algorithm was found to be zero at high temperatures. For low temperatures it fell to zero and stayed there. 
[image: ]

Figure9. The graph of Autocorrelation function variations based on 600 Markov Points in different temperatures T = 0.5KT(Low Temperature), T=10KT(High Temperature)by using SAPBC Method.

[image: ]

Figure10. Autocorrelation function for Metropolis algorithm at different Temperature phase by    SAPBC method. In table (1), there are measurement of integrated correlation time () between different algorithms such as Metropolis and heat bath algorithm with typewriter ordering and random ordering on 500 of Markov Points for L=64 with PBC Method. Easily seen from the table (1), the time autocorrelation of Metro- typew   is shorter than other algorithms.


Table1. There are measurement of integrated correlation time () between different algorithms such as Metropolis and heat bath algorithm with typewriter ordering and random ordering on 500 of Markov Points for L=64 with PBC Method.  As  can  be  see,  the  time  autocorrelation of  Metro, typew  is  shorter  than  other algorithms.
	
For 500 of Markov Points with PBC L=64
	Different
Algorithms
	
Metro,typew
	
HB,typew
	
Metro,random
	
HB,random

	
	
[image: ]
	
54
	
157
	
271
	
316



In table (2), we have calculated integrated correlation time for several Markov Points and different size of lattice on Importance Sampling Metropolis algorithm, with typewriter ordering by SAPBC Method as well,
 According to Equation:

  (15) [5].

As the length of lattice increase, the integrated correlation time will be longer for all of Markov Points. We perform this method on the Importance Sampling local &Non-cluster Metropolis algorithm of square lattice of   Ising model with typewriter and measure its autocorrelation time for several Markov Point and different size of lattice according to data on the table (2). By a little consideration and comparison between tables (1, 2), we will see that, in general, SAPBC Method has the much shorter time than PBC method.

For instance:

For 90*90 lattice on 500 of Markov Points by Metro, Importance Sampling, Typewriter with SAPBC Method, we have = 44.11686418,Equation (15).

While, time for 64*64 lattice with shorter length than above (90*90) on 500 of Markov Points by

Importance Sampling Metro&Typewriter with PBC Method take: =54.

Table2. Integrated correlation time, Equation (15), for several Markov Point and   different size of   lattice on Importance Sampling Metropolis algorithm, with typewriter ordering by SAPBC Method. By a little consideration and comparison between tables (1, 2), we will see that, in general, SAPBC Method has the much shorter time than PBC method.
	
	
Size of Lattice
	
L=10
	
L=50
	
L=60
	
L=90

	For 200 of Markov
Point(Metro,Importance Sampling,Typewriter) with SAPBC Method
	
[image: ]

	

20.01252581
	

32.21603988
	

35.68318808
	

38.46125807

	For 300 of Markov
Point(Metro,Importance Sampling, Typewriter) with SAPBC Method
	
[image: ]

	

20.72135409
	

31.4260469
	

35.69518504
	

41.94682875

	For 400 of Markov
Point(Metro,Importance Sampling, Typewriter) with SAPBC Method
	
[image: ]

	

19.58417429
	

29.5525833
	

34.67845486
	

44.11686418

	For 500 of Markov
Point(Metro,Importance Sampling, Typewriter) with SAPBC Method
	
[image: ]

	

16.13552043
	

26.72262622
	

35.07733829
	

45.15720244

	For 600 of Markov
Point(Metro,Importance Sampling, Typewriter) with SAPBC Method
	

[image: ]

	

16.01292042
	

22.14786839
	

35.33316382
	

45.2833748



1. Conclusions

Here, for overcome to critical slowing down and reach to the shorter autocorrelation time and faster correlation between spins, we will apply SAPBC Method(computational technique of Screw-Antisymmetric PeriodicBoundary condition (SAPBC Method) on local, non-cluster update algorithms of Isotropic square lattice Ising model of Monte Carlo Simulations, as well. Actually, in general, I will realize that algorithms performed by using SAPBC Method have faster correlation and much shorter autocorrelation time than algorithms performed by using PBC Method. More convergence of spin correlation at Critical temperature is obtained readily in this nascent method. The SAPBC Method also confirms and consists with the law of the spatial correlation length with its dynamical critical exponent [11]. It can be used as a new method applied to boundary conditions of Monte Carlo simulation problems extending on a variety of other models such as XY-Pots- Heisenberg model and also cluster algorithms such as Wolf, Swendsen-Wangas.., as well[15,16].
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