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Abstract. We find non-local but non-signaling probabilities satisfying the ‘nonlocality without
inequality’ arguments for multiple two-level systems. Maximum probability of success of these
arguments are obtained in the framework of a generalized nonlocal theory. Interestingly, for
two two-level systems, the probability of success of these arguments converge to a common
maximum in this framework. This is in sharp contrast with the quantum case, where for
such systems, Cabello’s argument succeeds more than that of Hardy’s. We also find that the
maximum probability of success of Hardy’s argument is the same for both the two and three
two-level systems in the framework of this more generalized theory.

1. Introduction
There exist correlations between quantum systems which no local-realistic theory can reproduce.
This was first shown by Bell by means of an inequality, known as Bell’s inequality [1]. Later,
Hardy [2] gave an argument which also reveals the non-local character of Quantum Mechanics,
but this argument, unlike Bell’s argument, does not use inequalities involving expectation
values. Afterwards, Cabello [3] introduced another logical structure to prove Bell’s theorem
without inequality. Though, Cabello’s logical structure was originally proposed for establishing
nonlocality for three particle states, but it was later exploited to establish nonlocality for a
class of two-qubit mixed entangled state [4]. It is noteworthy here that in contrast, there is no
two-qubit mixed state which shows Hardy type nonlocality [5] whereas almost all pure entangled
states of two-qubits do so (maximally entangled states are the exception)[6, 7]. Likewise,
for almost all two-qubit pure entangled states other than maximally entangled one, Cabello’s
nonlocality argument runs, but, intesestingly, for these states, the maximum probabilty of success
of this argument is more than that of the Hardy’s [8].

Although no local-realistic theory can reproduce quantum correlations still these corre- lations
cannot be exploited to communicate with a speed greater than that of the light in vacuum. But
quantum theory is not the only non-local theory consistent with the relativistic causality [9].
Theories which predict non-local correlations and hence permit violation of Bell’s inequality but
are constrained with the no signalling condition are called Generalized non-local theory (GNLT).
In recent years there has been an increasing interest in GNLT [10, 11, 12, 13, 14, 15, 16, 17, 18, 19].
In general, quantum theory has been studied in the background of classical theory which is
comparatively restrictive. The new idea is to study quantum theory from outside i.e., starting
from a general family of theories, and to study properties common to all [13]. This might help
in a better understanding of quantum non-locality.



In this paper, we study the non-locality arguments in the framework of GNLT. We find that
probability of success of both the Hardy’s and the Cabello’s nonlocality arguments converge
to a common maximum 0.5 for two two-level systems unlike the quantum case where they
are respectively 0.09 [6, 20] and 0.11 (approx) [8]. We, further find that 0.5 is also the
maximum probability of success of Hardy’s argument for three two-level systems in GNLT,
the corresponding qunatum maximum is known to be 0.125 [21].

2. Nonlocality arguments for two two-level systems and the generalized non local
theory
In the framework of a generalized probabilistic theory, consider a physical system consisting of
two subsystems shared between two far seperated observers, Alice and Bob. Assume that Alice
can run the experiments of measuring any one (chosen at random) of the two {−1,+1}-valued
random variables A and A

′
corresponding to her subsystem whereas Bob can run the experiments

of measuring any one (chosen at random) of the two {−1,+1}-valued random variables B and
B

′
corresponding to his subsystem. Consider now the following four conditions:

Prob(A = +1, B = +1) = 0,

Prob(A
′
= +1, B = −1) = 0,

Prob(A = −1, B
′
= +1) = 0,

Prob(A
′
= +1, B

′
= +1) = q

 (with q > 0). (1)

The above four conditions together form the basis of Hardy’s nonlocality argument. These four
cannot be fulfilled simultaneously in the framework of a local-realistic theory. To see this let
us start with the fourth condition in equation (1) which implies that (i) there is a non-zero
probability (which is q here) of simultaneous occurrence of A

′
= +1 and B

′
= +1. This will

then imply that (according to classical probability theory) (ii) if Alice chooses to perform the
measurement of A

′
, there will be a non-zero probability (which should be at least q) of getting

the value +1, and similarly, (iii) if Bob chooses to perform the measurement of B
′
, there will be a

non-zero probability (which should be at least q) of getting the value +1. Now the 3rd condition
in equation (1) implies that if Bob chooses for the measurement of B

′
and Alice chooses for A,

she is bound to get the value +1 whenever Bob gets the value +1 (which Bob can indeed get with
a non-zero probability, according to (iii)). Similarly the 2nd condition in equation (1) implies
that if Alice chooses to the measurement of A

′
and Bob chooses to perform B, he is bound to

get the value +1 whenever Alice gets the value +1 (which Alice can indeed get with a non-zero
probability, according to (ii)). So A = +1 is a ‘reality’ of A while B = +1 is also a ‘reality’
of B, according to EPR[23]. Now, invoking ‘locality’, A = +1 and B = +1 is a joint ‘reality’
of the composite system. And, according to condition (i) (again, using classical probability
arguments), the joint probability of occurrence of A = +1, B = +1 must be at least q. This
contradicts the first condition of equation (1). On the contrary almost all pure entangled state of
two-qubit (except the maximally entangled one) satisfy the above four conditions simultaneously
for suitable choices of observables[7] with a maximum probability of success (qmax) equal to 9%
(approx) [6, 20].

Cabello’s conditions result by replacing the right hand side of the first condition of (1) with
a nonzero probability p with p < q, and keeping the remaining three conditions intact. As
seen above, for local-realistic states to satisfy all the four conditions simultaneously, the joint
probability of occurrence of A = +1, B = +1 must be at least equal to q and thus these
conditions are also incompatible with local-realism. But, almost all pure entangled states of
two-qubits (except their maximally entangled states) satisfy these with a maximum success
probability equal to 11% (approx)[8].

We now study the character of a set of sixteen non-signalling joint probabilities P (im, jn)
where P (im, jn) denotes the probability of getting the output as im ∈ {+1,−1} and jn ∈



{+1,−1} in a measurement for M ∈ {A,A′} by Alice and N ∈ {B,B
′} by Bob. These sixteen

joint probabilities are given below:

Prob(A = +1, B = +1) = p1, Prob(A = +1, B = −1) = p2,
Prob(A = −1, B = +1) = p3, Prob(A = −1, B = −1) = p4,

Prob(A
′
= +1, B = +1) = p5, Prob(A

′
= +1, B = −1) = p6,

Prob(A
′
= −1, B = +1) = p7, Prob(A

′
= −1, B = −1) = p8,

(2)

Prob(A = +1, B
′
= +1) = p9, Prob(A = +1, B

′
= −1) = p10,

Prob(A = −1, B
′
= +1) = p11, Prob(A = −1, B

′
= −1) = p12,

Prob(A
′
= +1, B

′
= +1) = p13, Prob(A

′
= +1, B

′
= −1) = p14,

Prob(A
′
= −1, B

′
= +1) = p15, Prob(A

′
= −1, B

′
= −1) = p16.

Other than being members of the interval [0, 1], these probabilities must satisfy the
normalization condition:

p1 + p2 + p3 + p4 = 1, (3)

p5 + p6 + p7 + p8 = 1, (4)

p9 + p10 + p11 + p12 = 1, (5)

p13 + p14 + p15 + p16 = 1. (6)

The no-signaling constraint implies that if Alice measures for A (or A
′
), the individual

probabilities for the outcomes A = +1 (or A
′
= +1) and A = −1 (or A

′
= −1) must be

independent of whether Bob chooses to measure for B or B
′
and similar should be the case for

Bob too. So, the condition for causality to hold is given by:

p1 + p2 = p9 + p10, (7)

p3 + p4 = p11 + p12, (8)

p5 + p6 = p13 + p14, (9)

p7 + p8 = p15 + p16, (10)

p1 + p3 = p5 + p7, (11)

p2 + p4 = p6 + p8, (12)

p9 + p11 = p13 + p15, (13)

p10 + p12 = p14 + p16. (14)

We further assume that these probabilities respect the Hardy-type non-locality conditions:

p1 = 0, p6 = 0, p11 = 0, p13 = q. (15)

Using equation (15) into equation (7), we get

p2 ≥ p9. (16)

Using equation (15) into equation (11), we get

p3 ≥ p5. (17)



Using equation (15) into equation (3), we get

1 = p2 + p3 + p4 ≥ p2 + p3 ≥ p5 + p9, (18)

using equations (16) and (17). Using equation (15) into equations (9) and (13), we get

p5 + p9 = 2q + p14 + p15 ≥ 2q. (19)

Using equations (18) and (19), we get

1 ≥ p5 + p9 ≥ 2q.

Thus we have

q ≤ 1

2
. (20)

If we now follow the argument, beginning at equation (16) and ending at equation (20), it can
be easily shown that for q = 1/2, there is a unique solution for the above-mentioned sixteen
joint probabilities satisfying simultaneously all the conditions (3) to (15):

p2 = p3 = p5 = p8 = p9 = p12 = p16 =
1

2
and p4 = p7 = p10 = p14 = p15 = 0. (21)

Thus we see that above-mentioned sixteen probabilities will be non-local as well as non-signaling
iff 0 < q ≤ 1/2.

If, inplace of Hardy’s conditions, we put the Cabello’s conditions p1 = p, p6 = 0, p11 = 0 and
p13 = q in equations (3)-(14), we find after a little of Algebra that the above nonlocal probability
distribution is non-signalling upto q − p ≤ 0.5 (equality is in the sense‘just less than’).

Thus as far as maximum probability of success of the Hardy’s and the Cabello’s arguments
are concerned, none has got any practical edge over the other in GNLT, whereas in quantum
theory probability of success of Cabello’s argument is more than that of Hardy’s.

3. General non-signaling probabilities satisfying Hardy-type non-locality argument
for three two-level systems
Consider a physical system consisting of three subsystems shared among three far apart parties
Alice, Bob and Charlie, in the framework of a general probabilistic theory. Assume that Alice,
Bob and Charlie can measure one of the two observables Xi, Yi, where i stands for the 1st (i.e.,
Alice), 2nd (i.e., Bob), or 3rd (i.e., Charlie) on their respective subsystems. The outcomes of
each such measurements can be either up (U) or down (D). We now consider all the sixty four
joint probabilities Prob(R1 = j, R′

2 = k,R′′
3 = l), where R,R′, R′′ ∈ {X,Y } and j, k, l ∈ {U,D}.

For the sake of notational simplicity, we will denote X by 0 and Y by 1 and also U by 0 and D by
1. We can thus denote the above-mentioned joint probabilities as Prob(i = s1, j = s2, k = s3),
where i, j, k ∈ {0, 1} and s1, s2, s3 ∈ {0, 1}. To make it more readable, we will denote the
probability Prob(i = s1, j = s2, k = s3) by pis1js2ks3 , where is1js2ks3 is the binary representation
of the number 32i+ 16s1 + 8j + 4s2 + 2k + s3.

Apart from being the of the interval [0, 1], these sixty four joint probabilities p0, p1, . . ., p63
must satisfy the normalization conditions:

p0 + p1 + p4 + p5 + p16 + p17 + p20 + p21 = 1, p2 + p3 + p6 + p7 + p18 + p19 + p22 + p23 = 1,
p8 + p9 + p12 + p13 + p24 + p25 + p28 + p29 = 1, p10 + p11 + p14 + p15 + p26 + p27 + p30 + p31 = 1,
p32 + p33 + p36 + p37 + p48 + p49 + p52 + p53 = 1, p34 + p35 + p38 + p39 + p50 + p51 + p54 + p55 = 1,
p40 + p41 + p44 + p45 + p56 + p57 + p60 + p61 = 1, p42 + p43 + p46 + p47 + p58 + p59 + p62 + p63 = 1.

(22)



The no-signalling condition gives:

p0 + p1 = p2 + p3, p4 + p5 = p6 + p7, p8 + p9 = p10 + p11, p12 + p13 = p14 + p15,
p16 + p17 = p18 + p19, p20 + p21 = p22 + p23, p24 + p25 = p26 + p27, p28 + p29 = p30 + p31,
p32 + p33 = p34 + p35, p36 + p37 = p38 + p39, p40 + p41 = p42 + p43, p44 + p45 = p46 + p47,
p48 + p49 = p50 + p51, p52 + p53 = p54 + p55, p56 + p57 = p58 + p59, p60 + p61 = p62 + p63;

(23)
p0 + p4 = p8 + p12, p1 + p5 = p9 + p13, p2 + p6 = p10 + p14, p3 + p7 = p11 + p15,
p16 + p20 = p24 + p28, p17 + p21 = p25 + p29, p18 + p22 = p26 + p30, p19 + p23 = p27 + p31,
p32 + p36 = p40 + p44, p33 + p37 = p41 + p45, p34 + p38 = p42 + p46, p35 + p39 = p43 + p47,
p48 + p52 = p56 + p60, p49 + p53 = p57 + p61, p50 + p54 = p58 + p62, p51 + p55 = p59 + p63;

(24)
p0 + p16 = p32 + p48, p1 + p17 = p33 + p49, p2 + p18 = p34 + p50, p3 + p19 = p35 + p51,
p4 + p20 = p36 + p52, p5 + p21 = p37 + p53, p6 + p22 = p38 + p54, p7 + p23 = p39 + p55,
p8 + p24 = p40 + p56, p9 + p25 = p41 + p57, p10 + p26 = p42 + p58, p11 + p27 = p43 + p59,
p12 + p28 = p44 + p60, p13 + p29 = p45 + p61, p14 + p30 = p46 + p62, p15 + p31 = p47 + p63.

(25)
Given below are the Hardy-type non-locality conditions, which are incompatible with the

notion of local-realism, but which all genuinely entangled pure state of three-qubit satisfy [22]
with the maximum probabilty of success 12.5% [21] .

p32 = 0, p8 = 0,
p2 = 0, p63 = 0, p0 > 0.

(26)

Maximizing p0 subject to satisfying all the conditions given in equations (22), (23), (24), (25),
(26), with the help of Mathematica, gives the solution as

pmax
0 =

1

2
, (27)

while rest of the sixty four probabilities are given by1

p3 = p12 = p15 = p17 = p18 = p29 = p30 = p33 = p35 = p45 = p47 = p48 = p50 = p60 = p62 =
1

2
,

and pi = 0 for all i ∈ ({1, 2, . . . , 63}−{3, 12, 15, 17, 18, 29, 30, 33, 35, 45, 47, 48, 50, 60, 62}). (28)

Thus the maximum probability of success of Hardy’s argument for three two-level systems too
is more in GNLT than in the quantum theory.

4. Conclusion
In conclusion, we have shown here that in a more general framework of GNLT, the maximum
probability of success of Hardy’s argument can be enhanced for both the three two-level systems
and for two two-level systems. Interestingly, the maximum success probability for both type
of systems attains a common value 0.5. The same is the maximum probability of success of
Cabello’s argument for two two-level system in this more general framework.

Quantum non-locality has attracted much attention since its discovery because it relates
quantum mechanics with special relativity. Special relativity forbids sending physical
information with a speed greater than that of the light in vacuum. This is reflected in the
quantum mechanical joint probabilities appearing both in the violation of Bell’s inequality
as well as in the fulfillment of Hardy’s non-locality conditions, although there is no direct

1 This solution set is not unique, but maximum probabilty is 0.5, for each such set.



relevance of special relativity in the postulates of non-relativistic quantum mechanics. These
quantum mechanical joint probabilities are not only non-local but also non-signaling. The non-
local probabilities, coming out from quantum mechanical states can give rise to the maximum
violation up to the amount 2

√
2 of Bell’s inequality, whereas there are non-quantum mechanical

non-local joint probabilities which give rise to the maximal possible algebraic violation (namely,
4) of Bell’s inequality, without violating the relativistic-causality [9]. Why quantum theory can
not provide more than 2

√
2 violation of the Bell’s inequality? By exploiting the theoretical

structure of quantum mechanics it has been shown that a violation greater than 2
√
2 will result

in signalling in quantum mechanics [24, 25, 26]. We have seen in this paper that the no-
signaling constraint cannot restrict the maximum value of the non-zero probability appearing
in the Hardy’s (Cabello’s) argument to 0.09(0.11) all by itself. In a generalized non-signalling
theory this value can go up to 0.5. It will be an interesting open question to find what feature of
quantum mechanics along with no-signalling condition restricts these to their quantum values.
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