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Abstract. Perturbation theory uses Lagrangian techniques that require vector fields to
be compared at finitely separated points. This method can be generalised to the strong
gravitational field regime in one of two ways, using either covariant or Lie derivatives. In
this paper, I argue that those methods based on the Lie derivative are more useful. The Lie
derivative provides a clear picture of how the deformation of the fluid flow takes place. It also
provides a natural way to discuss large perturbations. I apply this method to some elementary
stability problems in the study of stellar structure.

1. Introduction
Perturbation techniques in fluid dynamics were developed principally to study the stability of
solutions of the equations of motion of a fluid [1]. In general, the study of stability requires
only infinitesimal deviations from the known solution to be considered. In situations where a
flow is known to be stable, the same techniques used in the study of stability can be applied to
investigate the properties of flows that differ only by small amounts from a stable flow and to
deduce approximate solutions for them.

In this paper, we consider the different available definitions of Lagrangian displacement. In
Section 2, show why the elementary definition of it is unsuitable for use in advanced studies,
discuss the alternative definition in terms of covariant derivatives, and show that the most
general definition available is in terms of the Lie derivative. In Section 3, we outline a general
mathematical framework for extending perturbation theory. We review the concepts of Lie
transport and derivative in Section 4, and justify the definition of Lagrangian difference in
terms of the Lie derivative in Section 5.

2. Lagrangian variation
Two types of variation are used in perturbation theory, called respectively Eulerian and
Lagrangian [1]. The Eulerian description of fluids is in terms of time-dependent fields defined
in three dimensional space. The Eulerian variation measures by how much a given field of the
perturbed flow differs from the corresponding field in the unperturbed flow. To determine the
Eulerian variation, one inspects the value of the field for the perturbed flow at a given point ~x
in space at time t and compares it with the value of the corresponding field for the unperturbed
flow at the same space point at time t. To express this analytically, denote the field for the
perturbed and unperturbed flows generically by the symbols Q and Q0 respectively. The fields



Q and Q0 might be scalar, vector or tensor fields. Then the Eulerian difference for the field Q
at position ~x at time t is defined to be

δQ(~x, t) = Q(~x, t)−Q0(~x, t) (1)

The difference δQ is of two fields defined at the same space point, and so is well defined
irrespective of the nature of the field Q. Elementary problems in perturbation theory can
be solved exclusively in terms of δQ, which is easy to use mathematically, and is relatively
easy to interpret physically. More advanced problems, however, require us to identify given
material elements in the fluid and to track and compare their properties in the perturbed and
unperturbed flows. In general, position ~x is occupied at time t in the two flows by different
material elements of the fluid, so δQ cannot be used directly to compare how the variable Q
differs in the two flows for one and the same material element.

To track a given fluid element, we need to switch from the Eulerian description of the fluid to
the Lagrangian. In the Lagrangian description, each material point of the fluid is assigned, once
and for all, a fixed set (a1, a2, a3) of coordinates and its motion through space is the tracked by
means of its trajectory

xi = F i(~a, t) (2)

The function ~F is called the flow. It delivers the position ~x in space of the particle at time t
when its material coordinates ~a and the value of t are used as inputs into the function ~F . Denote
the perturbed and unperturbed flows by ~F and ~F0 respectively. The Lagrangian difference ∆Q
in the value of a fluid variable Q is defined in elementary treatments by

∆Q = Q(~F (~a, t), t)−Q0(~F0(~a, t), t) (3)

Using the same value of ~a in both arguments guarantees that we are inspecting the value of Q
for the same material element in both flows.

This definition of ∆Q is problematic. It requires us to compare the values of the fields Q
and Q0 at different points in space. This poses no difficulties when Q and Q0 are scalar fields.
However, in general, vector and tensor fields such as fluid velocity, stress and rate of strain,
at different space points cannot be compared. To effect such a comparison, we need a method
for ‘copying’ the field Q to the same space point used to evaluate Q0. We can then form the
difference between the ‘copy’ of Q and Q0 at the same space point ~x = F0(~a, t). This problem
does not occur when the fluid flow takes place in an Euclidian space equipped with Cartesian
coordinates, the setting normally assumed for perturbation problems. However, it rears its head
the moment we choose to use non-Cartesian coordinates, or to consider flows in spaces other
than Euclidian.

Tensor fields at different locations may be compared by one of two methods. The one used
most commonly relies on the presence in the space of a connection and of an associated covariant
derivative [2]. The ‘remote’ field Q can then be copied by parallel transport to the position where
Q0 is measured and compared to it. The advantage of using this method is that it provides the
most obvious generalisation of the elementary definition of Lagrangian displacement, given in
equation (3). Comparison of tensor fields at different points in an Euclidian space relies on the
property of distant parallelism, which is a special property of its connection. This property is
obscured when we use Cartesian coordinates, ‘hidden in plain sight’ as it were, but forces itself
into our consciousness when we change to curvilinear coordinates, manifesting itself through
the path independence of parallel transport. Distant parallelism means that we are able us to
parallel-transport Q(~x′, t) unambiguously from position ~x′ to position ~x and there to construct

an unique ‘copy’ Q̃(~x, t) of Q(~x′, t). Using this unique copy, we can then form the difference

∆Q = Q̃(~x, t)−Q0(~x, t) (4)



The quantity ∆Q is unambiguously defined by virtue of the path independence of parallel
transport in Euclidian space, and can thus be used to replace definition (3) of the Lagrangian
difference. This definition leads to the approximate relation

∆Q = δQ+∇~ξ Q (5)

where ~ξ is the Lagrangian displacement (defined in the next section), used by many authors.
See for example references [1] and [2].

Many spaces of interest, however, do not possess the property of distant parallelism, even
when they possess a connection, so definition (4) of the Lagrangian difference also fails. In
a general connected manifold, parallel transport is in general path dependent. The quantity
Q̃(~x, t) is not uniquely defined, making definition (4) empty of content. The only exception to
this occurs when the points F (~a, t) and F0(~a, t) are infinitesimally close. This means that we
can continue to use definition (4) provided that we are interested only in perturbed flows that
differ only infinitesimally from the unperturbed one.

There is an alternative method available for comparing tensor fields at different positions.
This method does not rely on the existence of a connection on the space, is available in all
manifolds, and does not require the perturbation to be small. It is therefore suitable not only
for the discussion of stability of flows in general spaces, but can also be extended to deal with
large amplitude perturbations. In this method, the concept of Lie transport replaces that of
parallel transport, and the Lie derivative that of the covariant derivative.

3. A model for perturbations
Rather than consider a single perturbed flow ~F , which would force us to work only with finite
differences in the flow variables, it is simpler to work with a one-parameter family ~Fλ of perturbed
flows. One way to visualise these is by constructing a 1-dimensional continuum of spacetimes
Mλ. We can then regard each perturbed flow Fλ as taking place on a separate sheet Mλ of
these stacked spacetimes, with the flow on each sheet differing infinitesimally from one on the
next sheet. Another way to visualise this is by regarding all of the flows as defined on a single
spacetime M , which is the canonical projection of the spacetime stack in the direction of λ.
This projection, applied to a single perturbed flow, is visualised by Lynden-Bell and Ostriker
as a ‘ghostly flow’ accompanying the perturbed flow in much the same way as a residual image
accompanies the real image on a poor quality television screen.

The 1-parameter family of perturbed flows can be regarded as ‘distortions’ of the unperturbed
flow. Were we, at fixed time t, to allow the parameter λ to run through values from 0 to
some finite value, each material element of the flow would trace out a curve in space. This
three parameter family of curves defines the distortion flow, G(~x, t, λ). This flow in turn
defines a vector field ~η(~x, t, λ). Knowledge of ~η would allow us to deduce the distortion flow
G by integration, and hence to construct fully the perturbed flow corresponding to any given
parameter value λ. The problem of perturbation then reduces to that of finding equations that
determine the distortion field ~η(~x, t, λ). The form and nature of these equations depend not only
on the equations of motion of the fluid, but also on the constraints that the perturbations are
assumed to obey.

The Lagrangian displacement field ~ξ(~x, t) of standard perturbation theory is related to the
field ~η(~x, t, λ) at the parameter value λ = 0. If we confine ourselves to small perturbations, we
can express the distortion flow approximately in the form

Gi(~x, t, λ) = Gi(~x, t, 0) + λ
∂G

∂λ
(~x, t, 0) + · · · = xi + ληi(~x, t, 0) (6)

so that ~ξ(~x, t) = λ ~η(~x, t, 0). We do not develop this general scheme further in this paper. We
now return to the definition of the Lagrange difference in a general space.



4. The Lie derivative
Lie transport is the convective transport of objects by means of a flow [3]. Any point in the fluid
will convect in time t to a new position in space. Any curve consisting of fluid points will also
convect to a new position. A vector can always be constructed as the tangent to a given curve
that passes through its point of attachment. The convected curve will have a tangent vector
at the convective image of the attachment point. This vector is defined to be the convective
image of the given vector and is said to be Lie transported by the flow. The Lie transport of a
tensor is defined inductively from that of a vector by contracting it with the requisite number
of vectors (and covectors) to form an invariant. The Lie transport of the tensor is then that
tensor at the transported point that yields the same value of the invariant by contraction with
the transported vectors as is yielded by the original tensor with the original vectors. If T is
now taken to be a time independent tensor field rather than a single tensor, its Lie transported
image can be compared at any point on a flow line with the tensor defined by the field at that
point. The Lie derivative measures the rate at which the tensor of the field differs from its Lie
transported version at the same point.

Formally, this may be seen as follows. Let F (~x, t) be a flow. Denote by φt the diffeomorphims
defined by F . Thus, φt(~x) = F (~x, t). The fluid point which at time t = 0 occupies
position ~x, will be found at time t at position F (~x, t). The field T at this position has value
T (F (~x, t)) = T (φt(~x)), while at its original position it has value T (~x). Lie transport of T (~x)

to position F (~x, t) produces a tensor T̃ at that position. It can be shown that T̃ is given by
Tφt(T (~x)), where Tφt is the derivative of the mapping φt. Since this is a value at the point
F (~x, t), it can be compared directly to that of the field T at that point. The difference in these
values is a well defined quantity, called the Lie difference. For small values of t, it can be used
to define a differential quotient and, in the limit as t → 0, it defines the Lie derivative. It is
worth noting that we have not needed to introduce any additional structure on the space in the
definition of any of these operations, and so this method of forming differences and derivatives
is available on all types of manifold.

The above operations are easy to visualise physically. However, to get a cleaner mathematical
definition, it is better to perform the above procedures in reverse. Instead of convecting T (~x)

forwards with the flow to obtain its Lie transport T̃ , reverse the flow in time and Lie transport
the value T (φt(~x)) backwards to ~x. Then compare this transported value with T (~x) as reference.
Mathematically, the forward-transport and backward-transport procedures are equivalent and
yield the same result. The time-reversed transport is called ‘pull-back’ and yields the field
Tφ−1t (T (φt(~x))). It is denoted more briefly by φ∗tT (x). The Lie derivative is denoted by L ~XT ,

where ~X is the generating vector field for the flow F (that is, the velocity field of the flow), and
is thus defined by

L ~XT (~x) = lim
ε→0

φ∗εT (~x)− φ∗0T (~x)

ε
(7)

Since φ0 is the identity, we have φ∗0T (~x) = T (~x). All fields in the above definition are evaluated
at the same point ~x in space, so we can omit arguments without fear of ambiguity to write

L ~XT = lim
ε→0

φ∗εT − T
ε

(8)

Note that the vector field ~X that generates the flow can be any vector field and need not be the
velocity field of some actual fluid flow. For example, it could be the vector field ~ξ that generates
perturbations or deformations of a given unperturbed flow.



5. Lagrangian difference
Suppose Tλ is a tensor field associated with the perturbed flow Fλ(~x, t). We want to compare
the value of T at at the fluid point which, in the unperturbed flow occupies position ~x at time
t, with the value of the field Tλ at the position G(~x, t, λ) occupied by the same fluid point at
time t. In a general space, the only means by which this may be done is by Lie transporting
the value Tλ(G(~x, t, λ), t) backwards along the deformation flow G to position ~x. This can be
done via pull back and yields the value TG−1λ (Tλ(G(~x, t, λ), t)) = G∗λTλ(~x, t). This is the value
of the tensor field G∗λTλ at ~x, so it can be compared with the value T0(~x, t) of the field T0. The
difference

∆T = G∗λTλ(~x, t)− T0(~x, t) (9)

is thus a well defined quantity. Since the ‘classical’ notion of a Lagrangian difference is undefined
on a general manifold, and since the difference defined in the above equation encapsulates as
closely as possible the spirit of the ‘classical’ notion of a Lagrangian difference, we may take this
to be the correct generalisation of that concept to an arbitrary manifold [4].

To turn this definition into an useful mathematical operation, convert the above difference
into a derivative. This is done as follows. First note that

∆T = G∗λTλ(~x, t)−G∗0Tλ(~x, t) +G∗0Tλ(~x, t)− T0(~x, t)
= [G∗λTλ − Tλ] (~x, t) + Tλ(~x, t)− T0(~x, t) (10)

The last two terms are the Eulerian difference δT , while the first two are related to the Lie
derivative. To first order in λ, we have

∆T = λ L~ηTλ(~x, t) + δT (~x, t) (11)

Writing ~ξ = λ~η gives us the formula

∆T = L~ξTλ + δT (12)

used by Friedman and Schutz. They advocate the use of this definition with the claim that it is
‘somewhat more natural’ than ( 5). They might have claimed more: this is the only definition of
the Lagrangian difference that can be used universally, irrespective of the nature of the manifold
on which the flow occurs. We define also the derivative

d

dλ
Tλ

∣∣∣∣
λ=0

(~x, t) = lim
λ→0

∆T

λ
= L~ηT (~x, t, 0) +

∂T

∂λ
(~x, t, 0) (13)

which measures the rate at which the field T of the unperturbed flow changes per unit
deformation as we move to the perturbed flow. Used in conjunction with the equations of motion
of the fluid reformulated in terms of the Lie and exterior derivatives, the above scheme provides
a method for the extension of perturbation techniques to encompass also large perturbations.
This may provide an useful method for dealing with large amplitude oscillations in stars.
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