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Abstract. Ground-state properties of three-nucleon and four-nucleon systems are studied with
the angular-momentum-projected and parity-projected antisymmetrized molecular dynamics.
The Hamiltonian of the systems is constructed with semi-realistic nucleon-nucleon interactions.
The results obtained for the ground-state energies, root-mean-square radii and magnetic dipole
moments are compared with experimental results. The ground-state properties of the nuclei are
satisfactorily described.

1. Introduction

The structure of few-nucleon systems is widely and continuously investigated, both theoretically
and experimentally, mainly because of the simplicity of the systems. Reviews on a variety
of aspects of nuclear structure can be easily found in the literature [1, 2]. Over the years
a variety of theoretical methods have been developed and refined in the study of few-body
systems. Very accurate wave functions for bound states in few-nucleon systems can now be
constructed using realistic Hamiltonian for the systems. A demonstration of the level of accuracy
in describing ground state properties of the four-nucleon system by seven different state-of-the-
art methods is shown in reference [3]. The practical application of these methods become quite
involved as the systems become slightly increased. This work focuses on the use of one of the
microscopic simulation methods, the antisymmetrized molecular dynamics (AMD) in the study
of ground state properties of three-nucleon and four-nucleon systems. These type of methods
are continuously developing.

The AMD approach was developed [4] from the Time-Dependent Cluster Model [5] for the
study of fermionic systems. This approach combines Fermi-Dirac statistics with elementary
quantum mechanics to treat the motion of particles in a system [6]. However, the model is not
fully quantum mechanical and does not assume a shell structure for the system. Improved AMD
wave functions are shown to give good predictions of few-body systems [7, 8]. In this work the
parity projected and angular momentum projected AMD approach [9] is employed.

In the next Section 2 the general formalism of the AMD approach is summarised. In this
section the construction of the wave function, the equations of motion of the variable parameters
and the variational technique used are briefly outlined. Theoretical predictions of ground state
properties of three-nucleon and four-nucleon systems are presented in Section 3. Conclusions
drawn are given in Section 4.



2. The AMD Formalism

The antisymmetrised molecular dynamics (AMD) wave function describing a nuclear system of
A nucleons is constructed as a Slater determinant

ΨAMD(~S) =
1√
A!

det[φj(α,~si), χj(~σi), ξj(~τi) ] (1)

where φ, χ and ξ are, respectively, the spatial, spin and isospin components of the single-nucleon
wave functions. The spatial components are non-orthogonal Gaussian with complex variational
parameters ~si. The width parameter α is taken as real and free. A wave function with definite
parity(π) and total angular momentum (J) with the angular momentum projection (M) is
constructed from the AMD wave function as

ΨJπ
MK(~S) =

1

2
P J
MK(Ω) [ 1± P π ] ΨAMD(~S) (2)

where P J
MK(Ω) is the angular momentum projection operator, P π the parity projection operator

and ~S ≡ {~s1, ~s2, ~s3, . . . , ~sA}. The angular momentum projection operator is defined by [10]

P J
MK(Ω) =

2J + 1

8π2

∫

dΩDJ∗
MK(Ω) R̂(Ω) (3)

where DJ
MK(Ω) is the Wigner D-function, R̂(Ω) the rotation operator and Ω ≡ {α, β, γ} the

Euler rotation angles.
The single particle wave functions are given by

ψi(~rj) =

(

2α

π

)2/4

exp

[

−α
(

~rj −
~si(t)√
α

)2

+
1

2
~s2i (t)

]

⊗ χi ⊗ ξi (4)

where χi ⊗ ξi are the fixed spin-isospin states of the i-th nucleon. These states are compactly
expressed in the form κi = {N ↑ or N ↓ } for nucleon with spin-up or spin-down. The Gaussian
width parameter α is a real constant and the variational parameter ~s(t) is complex. The time-
dependent variational principle [11]

δ

∫ t2

t1

〈Ψ(~S) | ih̄ ∂
∂ t −H |Ψ(~S) 〉

〈Ψ(~S) |Ψ(~S) 〉
dt = 0 (5)

with the constraints
δΨ(t1) = δΨ(t2) = δΨ∗(t1) = δΨ∗(t2) = 0 . (6)

is used to determine the dynamical equations for the variational parameters. The resulting
equations can be transformed into the form [12]

d~si
dt

= −µ ∂E
J±
0 (~S, ~S∗)

∂~s∗i
,

d~s∗i
dt

= −µ ∂E
J±
0 (~S, ~S∗)

∂~si
(7)

where µ is an arbitrary positive real constant and

EJ±
0 (~S, ~S∗) =

〈ΨJ±
MK(~S)|H |ΨJ±

MK(~S) 〉
〈ΨJ±

MK(~S)|ΨJ±
MK(~S) 〉

. (8)

the variational energy of the nucleus. Solving these equations minimizes E0 and determines the
variational parameters. The Hamiltonian of the system is given by

H = −
∑

i

h̄2

2Mi
∇2

i +
1

2

∑

i 6=j

[

VNN (~rij) + VC(~rij)
]

(9)

where Mi is the mass of nucleon i, VNN the two-body nuclear potential and VC the Coulomb
potential. In this work the AV4 NN potential with the VC1(r) Coulomb component is used [13].
The evaluation of the components of the energy expectation values is explained in Ref. [14].



3. Ground State Properties

The variational energy for the three-nucleon and four-nucleon systems were calculated from
equation (8). The results are compared with experimental data in Table 1. The theoretical
energy for the 3H system overestimates the experimental energy by 5% and for the 3He system
the experimental energy is overestimated by 12%. Since the nuclear systems are described with
spherical wave functions, spatial rotations are not expected to introduce significant modifications
to the results obtained with the unprojected wave functions.

The root-mean-square radii of the nuclei were calculate using the expression

〈

r2
〉

MK
=

1

A

〈ΨJ±
MK | ∑A

i=1

(

~ri − ~R
)2

|ΨJ±
MK 〉

〈ΨJ±
MK |ΨJ±

MK 〉
(10)

where A is the number of nucleons in the nucleus and ~R the center-of-mass of the nucleus.
The results obtained are presented in Table 1. As can be observed from the table the AMD
approach generates poor predictions of the experimental values for the root-mean-square radii of
the nuclei. The experimental values of the radii are underestimated by the theoretical model for
all the nuclei. The predicted radius for the 3H system is about 16% less and for the 3He system
is about 22% less than the experimental values. The theoretical radius for the 4He system also
underestimated the experimental value by about 21%.

The magnetic moment ~µ of a nucleon in nuclear magnetons (µN ) is given by [16]

µ = gℓ

〈

~ℓ
〉

+ gs 〈~s 〉 (11)

where
〈

~ℓ
〉

(〈~s 〉) is the expectation value of the orbital (spin) angular momentum and gℓ (gs)

the orbital (spin) g-factor of the nucleon. The nucleon g-factors are constants, the values of
which are [16]

gℓ =

{

1 for proton
0 for neutron

: gs =

{

5.585695 for proton
−3.826085 for neutron .

(12)

The numerical magnetic moment of the nuclei ~µA is calculated from

~µ±MK =
〈ΨJ±

MK |∑A
i=1 [ gℓ

~ℓi + gs ~si ]|ΨJ±
MK 〉

〈ΨJ±
MK |ΨJ±

MK 〉
. (13)

Table 1. The ground-state energies (E0), root-mean-square radii (
√

〈 r2 〉) and magnetic
moments (µ) of the three-nucleon and four-nucleon systems. The values are for the parity and
angular momentum projected wave function. The experimental values are taken from reference
[15].

E0 (MeV)
√

〈 r2 〉 (fm) µ (µN )
AMD EXP AMD EXP AMD EXP

3H
(

1

2

+
)

-8.95 -8.48 1.33 1.60 2.769 2.979

3He
(

1

2

+
)

-8.61 -7.72 1.33 1.77 -1.847 -2.128

4He
(

0+
)

-23.04 -28.30 1.16 1.47 0.000



The values of the magnitude µ±MK = | ~µ±MK | for the three-nucleon and four-nucleon systems
are given in Table 1. In general, the AMD approach reproduces the experimental values for the
magnetic moment of the nuclei quite satisfactorily. The discrepancy can be rectified by including
other components of the ground-state wave function, like the mixed-symmetry S-state and theD-
state. Also, the implementation of the full version of the Argonne V18 potential including three-
nucleon forces, and the addition of relativistic corrections to the magnetic moment operator, are
expected to reduce the discrepancy between the theoretical results and experimental data.

4. Conclusions

To demonstrate the competency of the AMD model wave function in nuclear structure studies,
the angular momentum and parity projected AMD wave function was used to construct ground
state wave functions of selected few-nucleon systems. In the past the construction of AMD
wave functions was restricted to the use of phenomenological nucleon-nucleon potentials of
Gaussian radial form. In this work the nuclear Hamiltonian was described with the semi-
realistic Argonne V4’ nucleon-nucleon potential. Ground-state energies, root-mean-square
radii, magnetic moments and clustering in the nuclei were calculated using the constructed
wave functions and results were compared with experimental data. The AMD wave functions
reproduce the experimental values of these ground-state properties of light nuclei satisfactorily,
given the crude form of the model. The AMD wave function has limited flexibility which limits
the accuracy with which it can predict the nuclear properties. As was demonstrated in this work,
it is possible to construct the AMD wave function with realistic nuclear Hamiltonian. The use of
a more realistic nuclear Hamiltonian is important for a realistic description of nuclear systems.
However, because of the rigidity of the wave function, such a Hamiltonian may introduce very
little improvements in the accuracy of the theoretical results of the nuclear properties. A more
flexible variational wave function constructed with a more realistic nucleon-nucleon potentials,
including three-nucleon potentials may reduce the overall discrepancy between the experimental
observation and theoretical AMD predictions of the nuclear properties.
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