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Abstract

A new quantum representation of the electro-magriegid is introduced based on a bilinear expansibn
the field in terms of quark creation and annihdatbperators. This representation has definite rtdges,
leading automatically to the transversal naturglobtons and eliminating the need for artificial gau
fixing. However, this representation seems unablgroduce the correct expectation value of thegnef

a photon. To cure this situation a new continuouantum number is introduced, which entails new
positional information of a classical nature. largtard applications of quantum field theory thesgrees

of freedom are hidden as they only lead to triyiahse factors. However, in many-body situations and
when the state vectors are superpositions of mamestates, the phase factors can no longer beddnor
and provide positional information about the p&esc Hence, in situations typical of classical eyst the
“hidden” degrees of freedom emerge and are resplenfsir the classical positional information.

1. Bilinear quantum representation of the electromagngc field

The free electro-magnetic (e.m.) field satisfiesfiiee Maxwell equation:
~0,0 A" (x)+8"]0 , A“(¥)]=0. 1)
After imposing the Lorentz conditiorﬁﬂA"(x) =0 one arrives at the Klein-Gordon equations

-0,0“A’(X) =0, which has the usual plane wave solutiefs with k k* =0. The e.m. field
is now quantized by expanding in terms of thesssital solutions [1, p. 219], [2, p. 243]:

A, (X) = (2”) Ze(ﬂ) (k)[au) (k) e+ a(a) (k) e, (2)
\/_

where k”el‘f) (k) =0 and quantization is effected by imposing the cotation rules [2, p. 243]:

[ 2 (k)& () |06,0°(k-K). 3)
Various problems arise with this standard solut{@):to derive the Klein-Gordon equation from
the Lagrangian one needs to introduce a gaugedfiténm in the Lagrangian. The resulting
Lagrangian is no longer gauge invariant; (b) Tharum expansion requires 4 states, 2 of which
are unphysical, as the physical photon has only th@osverse degrees of freedom; (c) The
unphysical components (time-like and longitudirtatess) can be eliminated using techniques like
the Gupta-Bleuler [3, 4] projection technique, lbese methods are rather complex and

unnatural; (d) it leads to an indefinite metric file zeroth component of”(k); (e) this

operator representation leads to an infinite vacemargy, which can only be treated through
heuristic means.

2. Electromagnetic field as a consequence of the exdate of fermions



We propose an alternative representation of thetrelmagnetic field is possibly which gives
more recognition to the original motivation for itstroduction. The electromagnetic field is
originally required to guarantee the invariance fefmion Lagrangians under local gauge

transformations.g/(x) —» expia(X)¢/(X). Hence, instead of the original fermion Lagrangian
one used =iy, 0"y +eA'Py i , and subsequently adds the kinetic tefitd)F““F . The
free field equation (1) for the e.m. field is théerived by ignoring the source term. However, a
more basic quantum representation of this fiekliggested by the original source teggfr)” ¢ .

If one expands the fermion fieldg and { independently then one does not get the desired

representation, as one ends up with a double @ltegpresentation , while the correct expansion,
Eq.(2) only contains a single momentum integrale Holution is to collapse the momentum
expansions ofy and{/ to the same momentum variable, so that the feramginfermion state

can be considered as a single elementary stateg Wsassless bare quarks as the basic fermion
constituents, we get after imposing hermiticity:

A=¢ zﬁjdﬁ [(&apyﬂ%rs)b;pbﬂp + (@aapyﬂ@p)daﬁd;p]
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The fermion (quark) operators satisfy anti-commatatules [2, p..223]:
{b;ﬁ’bﬁb‘}:b;ﬁbﬁﬁ‘-l-bﬁb‘ by s =3,,0°(P~P; (5)

{di,.d,, =0l d,, +d,,d0, = 8,8%(P- ).
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The quark matrix elements can be calculated usiagree wave functions:
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normalized toéa 0@ =9, and é;‘pqﬂ;p =-0,5- The representation (4) does not have the

disadvantages associated with the traditional sgmtation. It also implies a certain unification of
Nature, as it relates fermion and boson degredseetiom in a natural way. The fundamental
nature of quarks is elevated, while boson degréés@dom are diminished.

Various other properties of this representation lmauexamined. For example, the photon

propagator can be derived and has the form of pagiator for a massive particle, with | O.
Hence, no gauge fixing terms are required in thgréwagian to obtain this result (however, one
could argue that the current Ansatz for the repriagien is a particular form of gauge fixing, but
this form does not affect the gauge invariancehef ltagrangian itself). The representation can
also be used to calculate expectation values tophoton. However, if one calculates the energy
expectation value of the photon one gets extra dewhich appear to be inconsistent. The
resolution of this puzzle will lead to some dramatnsequences, which we now examine.

3. Energy calculation of the photon

Within the quark representation the photon statebeawritten as follows:
|9.8) = D (-D)* 7 o "C el o — Be) (=) b}, 5| O), (7)
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where Y is a normalization factor. The sum goes over spahpr and isospin, but not over the
generation (family) quantum number, as the masd#lass quark states form an isospin doublet.
There are two transversal states +1, and one longitudinal state =0. One has to show that
the latter state cannot exist in the limitl O. The desired outcome for the energy of transversal
photons withe =1 is:
J'd3x<f)£|T°°(x)| r)£>/< pe| pe) = p, = p=hw. (8)
We now calculate this expectation value in termguark operators. Because of the bilinear form
of the photon state, Eq. (7), one gets two typeofributions from the operator matrix element.
The first type results from contracting the opersitappearing inl,, with the operators in the
state vectors and is thus called the connectedxmedément:
2 2
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We see that it leads to the correct result fortthasverse states (= +1). For the longitudinal
state we get zero, which is inconsistent with tlesiréd resultp, = p=Hhw, showing that
longitudinal states are not allowed physically.

Since we already obtained the correct result ftbhmfirst type of contributions, it is
desirable that the second set of contributiongyielro. However, these terms, which result from

the internal contraction of th&,;, appear to be finite:

2
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Here ~ is a sum over the quantum degrees of freedom efféhmions. The only way to
eliminate this term is to ensure that is infinite (this factor does not appear in thewnected
term). But this requires the introduction of a n&at of infinitely many degrees of freedom. This
is only possible if this degree of freedom rangesra continuous space. We now discuss the
possible form of this degree of freedom.

4, “Hidden” continuous degree of freedom

We suggest to add a continuous position varifotm the quantum number of the quark state:

T T
Doy = g5 (11)

This quantum number can be incorporated into theewanction without effect on quantum
mechanical transition matrix elements if it appesgs phase factor:

e o gPtd), (12)
which vanishes after squaring the matrix elemefitee new representation of the electro-
magnetic field now reads (we suppress the lesgaeleconstant part):

Af(x)=C ZJ‘% [ (473: oV Gy ) " by ydj, + ((Zaapyﬂ(”ﬁ ﬁ)e_zmxdn pbﬂp] -
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The new anti-commutation rules read:



{0],00,,04= 3,00 (B=B)S(E -8 0] 1 0, 0 }= 0,00°(B-B)S(E - ). (19
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One of the many desirable features of the new dxprereb;pg and d;ﬁg is that they are now
dimensionless, just like they are in the case wheg are defined over a discrete set of quantum
numbers. The introduction of this new quantum \bieia,? ensures thak is infinite, so that the
matrix element(Ty,) owaces VANIShes. This resolves the consistency problerh thié energy

expectation value in the quark representation @felectromagnetic field. But what is its physical
meaning and justification of this new quantum nurdi@éis question will be examined now.

5. Classical nature of hidden degrees of freedom
To examine the nature of the new degree of freesternonsider the phase factf* ¢’ in more
detail:

p(x=&) =E(t-&) - P (X-&) =—p- [X‘E‘E(t‘fo)} (15)

Hence, the introduction of enables us to define a definite reference p&irt & +—E(t -&,)

for the spatial variable<. However, F?(t) can also be interpreted as the classical posifcm
particle at timet if it started iné at time ¢, and moves with velocity = p/ E. If we choose

all initial points at a common timé, thenf and p fully describe the classical movement of all
particles specified by the universal state vectih wme. The natural choice for the common
time &, is the big bang, as this is certainly a uniquenéin the universe. The exact nature of the

variablesf and &, in the context of general relativity will not bésdussed here but insights in
the nature of different time and spatial variablesn expanding universe are discussed in [5].
The proposed theory also leads to a certain degresification between cosmology and particle
physics. Intuitively one can think (ﬁ as the equivalent birthplace of the particle atlitg bang.
The new quantum number also explains why the Rairciple is effective within one atom,

where the particles share the same quantum nua:qbwhile distinct atoms do not need to have

different internal quantum numbers, as the extegoaintum numbeg is different. So we can

extend the validity of the Pauli principle to thate vector of the whole universe.

Many physicists have played with the idea of hiddamniables to bring back part of
reality, the most well-known one being Einstein, Redolsky and Rosen argued that "elements
of reality" (hidden variables) must be added tomuan mechanics to explain entanglement
without action at a distance [6]. One reason wieg¢hefforts have failed is that one typically uses

the variableR , rather than a quantum numhér, to characterize the classical movement. This is
partly due to the fact that in most treatmentsh&f tjuantum-classical transition one use non-
relativistic quantum mechanics (NRQM). In NRQM tiearacterization of the state is through a
time dependent wave function, whereas in quant@hd fiheory one specifies the state with a
state vector and carries most time evolution infiklel operators. This use @R rather thang?
may also explain why Bell’s proof [7] of the impdsBty of hidden variables does not apply.

The current formulation clearly demonstrates whg ttassical variableR plays no

significant physical role in quantum processes,epkovhen one would link the interacting
particles explicitly to the macroscopic classicaasurement equipment. However, the classical



variablesR and 5 start playing a role in many body systems whiahtgpically considered as
classical. We now illustrate how these classicapprties emerge.

6. How can Nature appear classical in a quantum world?

Consider a typical quantum process: fermion - phetmattering . One amplitude (Feynman
diagram) for this process can be written as followthe operator language:
2 +oo
€
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where the symboN stands for normal ordering, and the overline iegk contraction of
operators. After evaluation of this amplitude there is an &ddial phase factoin the new
formulation

P:exr(ipifi +ip/é —ip; &, _ip’fflf)== eXp(‘iIT)i o & —ip e & +ip; o & +iD) o E:‘) 17)
where the meaning of the variables should be olsvig@ilearly if we calculate the Feynman
diagram we squard® and there is no effect. However, if the amplitusepart of the time

evolution of the state, and not calculated asrssitian matrix element, then the phase factors will
remain. Rewriting the phase factor for this ampléwas follows:

. = ai sy =7 ai' . = r) s =] r)'
P=exg -if * (R)~P-t=ip» (R - P-t) +ip, » (R, ——1) +ip, » (R, ——.1) | (18)
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one can rewrite this as a product of two phasefact

P =expl-in + R —if* R +ip, « R +i; + R, ), ()

P, =ex it[ﬁr DovpeDp e p p,fj - (20)
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The second phase factor reduces to unity if we sammergy conservation. The first phase
factor can be rewritten as follows, after imposimgmentum conservation:

R=expi{-p(R-R)-p-(R-R)+p R -R }. (21)
If the initial and final states are mixtures of nemtum states (e.g. when they are part of a many-
body state) then the maximal contributions of theplitude considered come from stationary

phase terms. Hence, in that case we can demandthibaindividual phase factors are
approximately stationary under variations of themeata, so that:

and

e R-R)=0 -~ R-R =0 @)
Applying this demand to all free momenta we have:
R=R=R =R;. (23)

So in an environment with a continuous range dfahimomenta, instead of specific momentum
states, coherence requires the classical coorditatee approximately the same. Hence, only the
guantum states satisfying Eqg. (23) survive the maody probability contest and thus the
classical world emerges from the quantum world.cBberence is responsible for the classical
phenomena, not decoherence. Detailed consideratibiise time-evolution of the many-body



guantum states are required to decide when a chsiscription becomes a good approximation
to the quantum description. Reduction theoriesthilase by Ghiraldi, Rimini and Weber [8] may
well play a role in linking the quantum field tratiens to the classical picture of macroscopic
physics.

7. Various consequences and properties of the new césal quantum number and
further work required

Because the phase factors do not affect the usumhtgm calculations the presence of the
classical quantum numbers is not in violation witle Heisenberg uncertainty principle. The
phase factors only become important in a many-kmaudgronment because of the dominance of
coherent states in many-body configurations. Ohly telative value of the classical position

variable R is of relevance as the phase factor plays nofoslendividual particles. This is to be
expected from a proper physical theory. When wé& ltocoherence arguments it is the relative

local classical positionﬁ(t) which is relevant, not the big bang coordina%e which can

undergo massive changes in quantum transitions.
The combined set of three position and three monmentariables reminds us of the

phase space variables in statistical mechanicsewenyvthe big bang quantum numbffrshave
no continuity in collisions (quantum transitiong)daone first must make the link to the classical

positional variableR, before relating this theory to statistical medbanTo realize this
connection in a consistent way should be an intieigetheoretical challenge.

8. Postscript

The relationship between classical and quantumigdygs been the subject of many papers and
of many debates between prominent physicists. &msasserted in 1931 that Quantum
Mechanics is incomplete and this paper shows thaivbll may have been right. The current
study indicates that standard quantum field th&€@J is incomplete in its usual form, although
the generalization required is probably not aldiglines Einstein was thinking of at the time.
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