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Abstract 
 
A new quantum representation of the electro-magnetic field is introduced based on a bilinear expansion of 
the field in terms of quark creation and annihilation operators. This representation has definite advantages, 
leading automatically to the transversal nature of photons and eliminating the need for artificial gauge 
fixing.  However, this representation seems unable to produce the correct expectation value of the energy of 
a photon. To cure this situation a new continuous quantum number is introduced, which entails new 
positional information of a classical nature. In standard applications of quantum field theory these degrees 
of freedom are hidden as they only lead to trivial phase factors. However, in many-body situations and 
when the state vectors are superpositions of momentum states, the phase factors can no longer be ignored 
and provide positional information about the particles. Hence, in situations typical of classical systems the 
“hidden” degrees of freedom emerge and are responsible for the classical positional information.  
 
1. Bilinear quantum representation of the electromagnetic field 
 
The free electro-magnetic (e.m.) field satisfies the free Maxwell equation:  
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After imposing the Lorentz condition: 0)( =∂ xAµ
µ  one arrives at the Klein-Gordon equations 

0)( =∂∂− xAνµ
µ , which has the usual plane wave solutions ikxe  with 0=µ

µ kk . The e.m. field 

is now quantized by expanding in terms of these classical solutions [1, p. 219], [2, p. 243]: 
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where 0)()( =kek
r

λ
µ

µ  and quantization is effected by imposing the commutation rules [2, p. 243]:  
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Various problems arise with this standard solution: (a) to derive the Klein-Gordon equation from 
the Lagrangian one needs to introduce a gauge fixing term in the Lagrangian. The resulting 
Lagrangian is no longer gauge invariant; (b) The quantum expansion requires 4 states, 2 of which 
are unphysical, as the physical photon has only two transverse degrees of freedom; (c) The 
unphysical components (time-like and longitudinal states) can be eliminated using techniques like 
the Gupta-Bleuler [3, 4] projection technique, but these methods are rather complex and 

unnatural; (d) it leads to an indefinite metric for the zeroth component of )()( ke
r

λ
µ ; (e) this 

operator representation leads to an infinite vacuum energy, which can only be treated through 
heuristic means. 
 
2. Electromagnetic field as a consequence of the existence of fermions 



 
We propose an alternative representation of the electromagnetic field is possibly which gives 
more recognition to the original motivation for its introduction. The electromagnetic field is 
originally required to guarantee the invariance of fermion Lagrangians under local gauge 
transformations. )()(exp)( xxix ψαψ → . Hence, instead of the original fermion Lagrangian  

one uses ψγψψγψ µ
µµ

µ eAiL +∂= , and subsequently adds the kinetic term µν
µν FF)4/1( . The 

free field equation (1) for the e.m. field is then derived by ignoring the source term. However, a 

more basic quantum representation of this field is suggested by the original source term ψγψ νe .   
If one expands the fermion fields ψ  and ψ independently then one does not get the desired 
representation, as one ends up with a double integral representation , while the correct expansion, 
Eq.(2) only contains a single momentum integral. The solution is to collapse the momentum 
expansions of ψ  and ψ  to the same momentum variable, so that the fermion-anti-fermion state 
can be considered as a single elementary state. Using massless bare quarks as the basic fermion 
constituents, we get after imposing hermiticity: 
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The fermion (quark) operators satisfy anti-commutation rules [2,  p..223]: 
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The quark matrix elements can be calculated using the free wave functions: 
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normalized to αββα δφφ =pp
rr  and αββα δφφ −=a

p
a

p
rr . The representation (4) does not have the 

disadvantages associated with the traditional representation. It also implies a certain unification of 
Nature, as it relates fermion and boson degrees of freedom in a natural way. The fundamental 
nature of quarks is elevated, while boson degrees of freedom are diminished. 

Various other properties of this representation can be examined. For example, the photon 

propagator can be derived and has the form of a propagator for a massive particle, with 0↓m . 
Hence, no gauge fixing terms are required in the Lagrangian to obtain this result (however, one 
could argue that the current Ansatz for the representation is a particular form of gauge fixing, but 
this form does not affect the gauge invariance of the Lagrangian itself). The representation can 
also be used to calculate expectation values for the photon. However, if one calculates the energy 
expectation value of the photon one gets extra terms which appear to be inconsistent. The 
resolution of this puzzle will lead to some dramatic consequences, which we now examine. 
 
3. Energy calculation of the photon 
 
Within the quark representation the photon state can be written as follows: 
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where χ  is a normalization factor. The sum goes over spin, color and isospin, but not over the 
generation (family) quantum number, as the massless bare quark states form an isospin doublet. 
There are two transversal states 1±=ε , and one longitudinal state 0=ε . One has to show that 

the latter state cannot exist in the limit 0↓m . The desired outcome for the energy of transversal 
photons with 1±=ε  is: 
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We now calculate this expectation value in terms of quark operators. Because of the bilinear form 
of the photon state, Eq. (7), one gets two types of contributions from the  operator matrix element. 
The first type results from contracting the operators appearing in 00T  with the operators in the 

state vectors and is thus called the connected matrix element: 
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We see that it leads to the correct result for the transverse states ( 1±=ε ). For the longitudinal 
state we get zero, which is inconsistent with the desired result ωhpp ==0 , showing that 

longitudinal states are not allowed physically. 
  Since we already obtained the correct result from the first type of contributions, it is 
desirable that the second set of contributions yield zero. However, these terms, which result from 
the internal contraction of the 00T , appear to be finite: 
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Here Σ  is a sum over the quantum degrees of freedom of the fermions. The only way to 
eliminate this term is to ensure that Σ  is infinite (this factor does not appear in the connected 
term). But this requires the introduction of a new set of infinitely many degrees of freedom. This 
is only possible if this degree of freedom ranges over a continuous space. We now discuss the 
possible form of this degree of freedom. 
  
4. “Hidden” continuous degree of freedom 
 

We suggest to add a continuous position variable ξ
r

 to the quantum number of the quark state: 
††

ξαα rrr
pp bb →          (11) 

This quantum number can be incorporated into the wave function without effect on quantum 
mechanical transition matrix elements if it appears as a phase factor: 

)( ξ−→ xipipx ee .        (12) 
which vanishes after squaring the matrix elements. The new representation of the electro-
magnetic field now reads (we suppress the less relevant constant part): 
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The new anti-commutation rules read: 
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One of the many desirable features of the new operators †
ξα
rr

p
b  and †

ξα
rr

p
d  is that they are now 

dimensionless, just like they are in the case when they are defined over a discrete set of quantum 

numbers. The introduction of this new quantum variable ξ
r

 ensures that Σ  is infinite, so that the 

matrix element contractedT )( 00  vanishes. This resolves the consistency problem with the energy 

expectation value in the quark representation of the electromagnetic field. But what is its physical 
meaning and justification of this new quantum number? This question will be examined now. 

 
5. Classical nature of hidden degrees of freedom  
 
To examine the nature of the new degree of freedom we consider the phase factor )( ξ−xipe  in more 
detail: 

  




 −−−•−=−•−−=− )()()()( 00 ξξξξξ t
E

p
xpxptExp

r
rrrrrr

   (15) 

Hence, the introduction of ξ
r

 enables us to define a definite reference point )( 0ξξ −+= t
E
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for the spatial variable x
r

. However, )(tR
r

 can also be interpreted as the classical position of a 

particle at time t  if it started in ξ
r

 at time 0ξ  and moves with velocity Epv /
rr = . If we choose 

all initial points at a common time 0ξ  then ξ
r

 and p
r

 fully describe the classical movement of all 

particles specified by the universal state vector with time. The natural choice for the common 
time 0ξ  is  the big bang, as this is certainly a unique event in the universe. The exact nature of the 

variables ξ
r

 and 0ξ  in the context of general relativity will not be discussed here but insights in 

the nature of different time and spatial variables in an expanding universe are discussed in [5]. 
The proposed theory also leads to a certain degree of unification between cosmology and particle 

physics. Intuitively one can think of ξ
r

 as the equivalent birthplace of the particle at the big bang.  
The new quantum number also explains why the Pauli principle is effective within one atom, 

where the particles share the same quantum number ξ
r

, while distinct atoms do not need to have 

different internal quantum numbers, as the external quantum number ξ
r

 is different. So we can 
extend the validity of the Pauli principle to the state vector of the whole universe. 

Many physicists have played with the idea of hidden variables to bring back part of 
reality, the most well-known one being Einstein. He, Podolsky and Rosen argued that "elements 
of reality" (hidden variables) must be added to quantum mechanics to explain entanglement 
without action at a distance [6]. One reason why these efforts have failed is that one typically uses 

the variable R
r

, rather than a quantum number ξ
r

, to characterize the classical movement. This is 
partly due to the fact that in most treatments of the quantum-classical transition one use non-
relativistic quantum mechanics (NRQM). In NRQM the characterization of the state is through a 
time dependent wave function, whereas in quantum field theory one specifies the state with a 

state vector and carries most time evolution in the field operators. This use of R
r

 rather than ξ
r

 
may also explain why Bell’s proof [7] of the impossibility of hidden variables does not apply. 

The current formulation clearly demonstrates why the classical variable R
r

 plays no 
significant physical role in quantum processes, except when one would link the interacting 
particles explicitly to the macroscopic classical measurement equipment. However, the classical 



variables R
r

 and ξ
r

 start playing a role in many body systems which are typically considered as 
classical. We now illustrate how these classical properties emerge.  
 
6. How can Nature appear classical in a quantum world? 
 
Consider a typical quantum process: fermion - photon scattering . One amplitude  (Feynman 
diagram) for this process can be written as follows in the operator language: 
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where the symbol N  stands for normal ordering, and the overline implies a contraction of 
operators.  After evaluation of this amplitude there is an additional phase factor in the new 
formulation: 
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where the meaning of the variables should be obvious. Clearly if we calculate the Feynman 
diagram we square P  and there is no effect. However, if the amplitude is part of the time 
evolution of the state, and not calculated as a transition matrix element, then the phase factors will 
remain. Rewriting the phase factor for this amplitude as follows: 
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one can rewrite this as a product of two phase factors: 
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The second phase factor reduces to unity if we impose energy conservation.  The first phase 
factor can be rewritten as follows, after imposing momentum conservation:  
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If the initial and final states are mixtures of momentum states (e.g. when they are part of a many-
body state) then the maximal contributions of the amplitude considered come from stationary 
phase terms. Hence, in that case we can demand that the individual phase factors are 
approximately stationary under variations of the momenta, so that: 
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Applying this demand to all free momenta we have: 
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So in an environment with a continuous range of initial momenta, instead of specific momentum 
states, coherence requires the classical coordinates to be approximately the same. Hence, only the 
quantum states satisfying Eq. (23) survive the many-body probability contest and thus the 
classical world emerges from the quantum world. So coherence is responsible for the classical 
phenomena, not decoherence. Detailed considerations of the time-evolution of the many-body 



quantum states are required to decide when a classical description becomes a good approximation 
to the quantum description. Reduction theories like those by Ghiraldi, Rimini and Weber [8] may 
well play a role in linking the quantum field transitions to the classical picture of macroscopic 
physics.  
 
7. Various consequences and properties of the new classical quantum number and 
further work required 
 
Because the phase factors do not affect the usual quantum calculations the presence of the 
classical quantum numbers is not in violation with the Heisenberg uncertainty principle. The 
phase factors only become important in a many-body environment because of the dominance of 
coherent states in many-body configurations. Only the relative value of the classical position 

variable R
r

 is of relevance as the phase factor plays no role for individual particles. This is to be 
expected from a proper physical theory. When we look at coherence arguments it is the relative 

local classical position )(tR
r

 which is relevant, not the big bang coordinate ξ
r

, which can 
undergo massive changes in quantum transitions.  

The combined set of three position and three momentum variables reminds us of the 

phase space variables in statistical mechanics, however, the big bang quantum numbers ξ
r

 have 
no continuity in collisions (quantum transitions) and one first must make the link to the classical 

positional variable R
r

, before relating this theory to statistical mechanics. To realize this 
connection in a consistent way should be an interesting theoretical challenge.  

 
8. Postscript 
 
The relationship between classical and quantum physics has been the subject of many papers and 
of many debates between prominent physicists. Einstein asserted in 1931 that Quantum 
Mechanics is incomplete and this paper shows that he well may have been right. The current 
study indicates that standard quantum field theory QFT is incomplete in its usual form, although 
the generalization required is probably not along the lines Einstein was thinking of at the time.  
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