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Abstract. The theory of continuous measurement provides a tool to monitor the evolution of the wave
function of a single quantum system in real time. We re-derive the master equation in the non-selective
regime for the dynamics of the wave function of a particle in an external potential which is subject
to continuous measurement of position. In the derivation weview continuous measurement as the
limit of a sequence of unsharp position measurements. Unsharp position measurements are achieved
by selecting generalised measurement observables, or in mathematical terms, positive operator valued
measures (POVM) rather than the standard von Neumann projection operators which are a special class
of the sub-class of POVM’s called projection valued measures (PVM). We also introduce a commutative
algebra that allows us to perform commutative operations with non-commuting position operators. We then
deduce the stochastic Ito equations for the selective regime of measurement.

1. Introduction
In 1987, Caves and Milburn [1] suggested a model for the continuous measurement of the position
of a quantum system. Their model was based on the theory of continuous quantum measurement as
suggested, in 1982, by Barchielli [2] et al. In 1988, Diosi [3] showed that continuous measurement
of position in the selective regime can be represented by a certain Ito stochastic master equation. In
this paper we take a simplified approach to re-derive the master equations for continuous position
measurement in both the selective and non-selective regimes. In our approach, we view continuous
position measurement as a sequence of unsharp measurementsof position of a quantum system in the
following limit;

lim
τ→0
σ→∞

1

σ2τ
= γ, (1)

whereτ is the time interval between two consecutive measurements,σ is the precision parameter of the
measurements andγ is a finite quantity called the decoherence rate. For historical reasons we shall refer
to this limit as the Barchielli limit. We represent the unsharp measurement of position of a quantum
system by generalised position observables.
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Figure 1. Schematic diagram for the time evolution of a system undergoing a sequence of measurements
M̂ at time intervalsτ . Between two consecutive measurements the closed system evolves unitarily.

2. Non-selective regime
We consider weak position measurements of a system with one spatial degree of freedomx, with
outcomes̄x, represented by Kraus operators [4]

M̂x̄ =
1

4
√
2πσ2

exp
(−(x̂− x̄)2

4σ2

)

, (2)

and unitaries

Û = exp
(

− i

~
Ĥτ

)

= 1− i

~
Ĥτ +O(τ2), (3)

whereĤ is the Hamiltonian of the system,̂x is the position measurement operator and~ = h/2π

(Planck’s constant divided by2π). The effectsÊx̄ = M̂ †
x̄M̂x̄ of the measurements are Gaussian. If at

time t, the state of the system is represented by the density operator ρ̂(t), then after a timeτ , the state of
the system is given by (compare figure 1.)

ρ̂(t+ τ) =

∞
∫

−∞

dx̄ ÛM̂x̄ρ̂(t)M̂
†
x̄Û

†

=
1√
2πσ2

Û
(

∞
∫

−∞

dx̄ exp
(−(x̂− x̄)2

4σ2

)

ρ̂(t) exp
(−(x̂− x̄)2

4σ2

))

Û †. (4)

Inorder to carry out the integration we introduce a commutative super-algebra [5, 6] with position
operatorŝxL andx̂R which are defined as follows;

x̂Lρ̂(t) ≡ ρ̂(t)x̂L := x̂ρ̂(t) (5)

and
x̂Rρ̂(t) ≡ ρ̂(t)x̂R := ρ̂(t)x̂. (6)

Given that the operator̂x has the following spectral representation,

x̂ =

∞
∫

−∞

x P̂ (dx) (7)

wherex are position eigenvalues and̂P (dx) = dx |x〉〈x| is a projection valued measure. In a similar
way we can expand the operatorsx̂L andx̂R as follows;

x̂L =

∞
∫

−∞

x′ P̂L(dx
′) andx̂R =

∞
∫

−∞

x′′ P̂R(dx
′′). (8)



The actions ofP̂L(dx
′) and P̂R(dx

′′) on any arbitrary operator̂A on the Hilbert spaceH are defined as
follows;

P̂L(dx
′)Â ≡ Â P̂L(dx

′) := P̂ (dx) Â, (9)

and
P̂R(dx

′′)Â ≡ Â P̂R(dx
′′) := Â P̂ (dx) (10)

respectively. The equations (9) and (10) are consistent with equations (5) and (6). Since the operatorsx̂L

andx̂R commute with all operators on the Hilbert space we can rewrite equation (4) as follows;

ρ̂(t+ τ) =
1√
2πσ2

Û
(

∞
∫

−∞

dx̄ exp
(−(x̂L − x̄)2 − (x̂R − x̄)2

4σ2

))

ρ̂(t)Û †

=
1√
2πσ2

Û
(

∞
∫

−∞

dx̄ exp
(

− 1

2σ2
x̄2 +

x̂L + x̂R

2σ2
x̄− x̂2L + x̂2R

4σ2

))

ρ̂(t)Û †. (11)

We shall evaluate the integral in equation (11) as follows;

∞
∫

−∞

dx̄ exp
(

− 1

2σ2
x̄2 +

x̂L + x̂R

2σ2
x̄− x̂2L + x̂2R

4σ2

)

=

∞
∫

−∞

∞
∫

−∞

[

∞
∫

−∞

dx̄ exp
(

− 1

2σ2
x̄2 +

x′ + x′′

2σ2
x̄− (x′)2 + (x′′)2

4σ2

)]

P̂L(dx
′) P̂R(dx

′′)

=

∞
∫

−∞

∞
∫

−∞

[√
2πσ2(1− 1

8σ2
((x′)2 + (x′′)2 − 2x′x′′) +O(σ−4))

]

P̂L(dx
′) P̂R(dx

′′)

=
√
2πσ2

(

1− 1

8σ2
(x̂2L + x̂2R − 2x̂Lx̂R) +O(σ−4)

)

, (12)

where the integration over the possible measurement results x̄ has been carried out and the obtained
exponential Taylor-expanded. Substituting equations (3)and (12) into equation (11) yields the following;

∆ρ̂(t) =ρ̂(t)(t+ τ)− ρ̂(t) = (1− i

~
Ĥτ +O(τ2))

×(1− 1

8σ2
(x̂2L + x̂2R − 2x̂Lx̂R) +O(σ−4))ρ̂(t)(1+

i

~
Ĥτ +O(τ2))− ρ̂(t)

=− i

~
[Ĥ, ρ̂(t)]τ − 1

8σ2
[x̂, [x̂, ρ̂(t)]] +

iτ

8~σ2
[Ĥ, [x̂, [x̂, ρ̂(t)]]] +O(τ2) +O(σ−4). (13)

In the Barchielli limit, equation (13) becomes

dρ̂(t) = − i

~
[Ĥ, ρ̂(t)]dt− γ

8
[x̂, [x̂, ρ̂(t)]]dt. (14)

We note that the higher order terms inτ vanish asτ approaches0. Equation (14) is the master equation
of continuous position measurement in the non-selective regime.



3. Selective Regime
While we average the state of the system after measurement over all possible outcomes in the non-
selective regime, we have to account for the measurement results in the selective regime. If at a time
t the state of the system is represented by the density operator ρ̂(t), then after a timeτ the state of the
system is given by

ρ̂(t+ τ) =
1

pρ̂(x̄)
ÛM̂x̄ρ̂(t)M̂

†
x̄Û

†, (15)

wherepρ̂(x̄) is the probability of obtaining the measurement resultx̄ given that the state of the system is
ρ̂. The inverse of the probability is evaluated as follows;

1

pρ̂(x̄)
=
[

tr

{ 1√
2πσ2

exp
(

− (x̂− x̄)2

2σ2

)

ρ̂(t)
}]−1

≈
[ 1√

2πσ2
exp

(

− x̄2

2σ2

)(

1 +
x̄

σ2
〈x̂〉ρ̂

)]−1

≈
√
2πσ2 exp

( x̄2

2σ2

)(

1− x̄

σ2
〈x̂〉ρ̂ +

x̄2

σ4
〈x̂〉2ρ̂

)

, (16)

and the measurement operator is expanded as follows;

M̂x̄ =
1√
4πσ2

exp
(

− x̄2

4σ2

)(

1− x̂3x̄

8σ4
+

x̂2x̄2

8σ4
+

x̂x̄

2σ2
+

x̂4

32σ4
− x̂2

4σ2
+O(σ−6)

)

. (17)

In doing both expansions we take note of the fact that except for terms inx̄2/σ−4 all terms inσ−4 and
below vanish in the Barchielli limit. To simplify the evaluation of equation (15), we first evaluate the
measurement part.

M̂x̄ρ̂(t)M̂
†
x̄

pρ̂(x̄)

=
(

1− x̄

σ2
〈x̂〉ρ̂ +

x̄2

σ4
〈x̂〉2ρ̂

)(

1− x̂3x̄

8σ4
+

x̂2x̄2

8σ4
+

x̂x̄

2σ2
+

x̂4

32σ4
− x̂2

4σ2
+O(σ−6)

)

ρ̂(t)

×
(

1− x̂3x̄

8σ4
+

x̂2x̄2

8σ4
+

x̂x̄

2σ2
+

x̂4

32σ4
− x̂2

4σ2
+O(σ−6)

)

=
(

1− x̄

σ2
〈x̂〉ρ̂ +

x̄2

σ4
〈x̂〉2ρ̂

)(

ρ̂(t) +
x̄

2σ2
{x̂, ρ̂(t)} − 1

8σ2
[x̂, [x̂, ρ̂(t)]]− 1

8σ2
{x̂, {x̂, ρ̂(t)}}

+
x̄2

8σ4
{x̂, {x̂, ρ̂(t)}} − x̄

8σ4
{x̂3, ρ̂(t)}+ 1

32σ4
{x̂4, ρ̂(t)}

− x̄

4σ4
x̂2ρ̂(t)x̂+

1

16σ4
x̂2ρ̂(t)x̂2 +O(σ−6)

)

=
(

1− x̄τγ〈x̂〉ρ̂ + x̄2τ2γ2〈x̂〉2ρ̂
)(

ρ̂(t) +
x̄τγ

2
{x̂, ρ̂(t)} − τγ

8
[x̂, [x̂, ρ̂(t)]]

− τγ

8
{x̂, {x̂, ρ̂(t)}} + x̄2τ2γ2

8
{x̂, {x̂, ρ̂(t)}} − x̄τ2γ2

8
{x̂3, ρ̂(t)} + τ2γ2

32
{x̂4, ρ̂(t)}

− x̄τ2γ2

4
x̂2ρ̂(t)x̂+

τ2γ2

16
x̂2ρ̂(t)x̂2 +O(τ3)

)

, (18)

in the Barchielli limit. We now take the approach of [3] and [7] and introduce stochastic equations that
govern our measurement resultsx̄. From [3] we know that̄xt = 〈x̂〉ρ̂(t) + 1√

γ
wt, wherewt is standard

white noise which is defined by〈wt〉st = 0 and〈wtws〉st = δ(t − s). [3] mentions the mathematical



shortcomings of the equation and introduces the mathematically well behaved quantityQt which is the
time integrated measurement signal, given by

Qt =

t
∫

0

x̄t′ dt
′ =

t
∫

0

(

〈x̂〉ρ̂(t′) +
1√
γ
wt′

)

dt′. (19)

The integral in equation (19) is generally not easy to evaluate and hence we prefer the differential form,

dQt = 〈x̂〉ρ̂(t)dt+ γ−
1

2 dWt, (20)

whereWt =
∫ t

0 wt′dt
′ is a Wiener process. The Wiener incrementsdWt satisfy the following Ito rules;

〈dWt〉st = 0, (dWt)
2 = dt, and(dWt)

n = 0 for n > 2. In the Barchielli limit,x̄τ = dQt. It follows
that x̄2τ2 = (dQt)

2 = 1
γ
dt, after applying Ito rules. Equation (18) thus reduces to

M̂x̄ρ̂(t)M̂
†
x̄

pρ̂(x̄)

=
(

1− (dQt)γ〈x̂〉ρ̂ + τγ〈x̂〉2ρ̂
)(

ρ̂(t) +
(dQt)γ

2
{x̂, ρ̂(t)} − τγ

8
[x̂, [x̂, ρ̂(t)]]

− τγ

8
{x̂, {x̂, ρ̂(t)}} + τγ2

8γ
{x̂, {x̂, ρ̂(t)}}

)

=
(

1− (dQt)γ〈x̂〉ρ̂ + τγ〈x̂〉2ρ̂
)(

ρ̂(t) +
(dQt)γ

2
{x̂, ρ̂(t)} − τγ

8
[x̂, [x̂, ρ̂(t)]]

)

=ρ̂(t)− τγ

8
[x̂, [x̂, ρ̂(t)]] +

(dQt)γ

2
{x̂, ρ̂(t)} − (dQt)γρ̂(t)〈x̂〉ρ̂

− τγ〈x̂〉ρ̂
2

{x̂, ρ̂(t)} + τγ〈x̂〉2ρ̂ρ̂(t)

=ρ̂(t)− τγ

8
[x̂, [x̂, ρ̂(t)]] +

(dQt)γ

2
{x̂− 〈x̂〉ρ̂, ρ̂(t)} −

τγ〈x̂〉ρ̂
2

{x̂− 〈x̂〉ρ̂, ρ̂(t)}

=ρ̂(t)− τγ

8
[x̂, [x̂, ρ̂(t)]] +

γ

2
{x̂− 〈x̂〉ρ̂, ρ̂(t)}(dQt − τ〈x̂〉ρ̂). (21)

From equation (21) it follows that

ρ̂(t+ τ)

=
(

1− i

~
Ĥτ +O(τ2)

)(

ρ̂(t)− τγ

8
[x̂, [x̂, ρ̂(t)]] +

γ

2
{x̂− 〈x̂〉ρ̂, ρ̂(t)}(dQt − τ〈x̂〉ρ̂)

)

×
(

1+
i

~
Ĥτ +O(τ2)

)

=ρ̂(t)− τγ

8
[x̂, [x̂, ρ̂(t)]] +

γ

2
{x̂− 〈x̂〉ρ̂, ρ̂(t)}(dQt − τ〈x̂〉ρ̂)−

i

~
Ĥτ ρ̂(t) + ρ̂(t)

i

~
Ĥτ

=ρ̂(t)− iτ

~
[Ĥ, ρ̂(t)]− τγ

8
[x̂, [x̂, ρ̂(t)]] +

γ

2
{x̂− 〈x̂〉ρ̂, ρ̂(t)}(dQt − τ〈x̂〉ρ̂), (22)

and

dρ̂(t) = − i

~
[Ĥ, ρ̂(t)]dt− γ

8
[x̂, [x̂, ρ̂(t)]]dt+

γ

2
{x̂− 〈x̂〉ρ̂, ρ̂(t)}(dQt − 〈x̂〉ρ̂dt). (23)

Equation (23) is the master equation for continuous measurement of position in the selective regime.
We refer readers who wish to have in-depth understanding of the stochastic calculus we used in this
derivation to the book by Gardiner [8].



4. Conclusion
We re-derived the master equations for the continuous measurement of position in both the selective and
non-selective regimes. In the derivation of the master equations we applied a commutative super-algebra
and the Ito stochastic calculus, which was suggested by Diosi [3]. In contrast to Diosi, our approach
is based on combining the Kraus representation of the state change due to measurement with the Ito
calculus by expressing the integrated measurement signalQ by means of a Wiener process. This leads
to the simplification of the derivation. The derived master equations are important tools to describe state
monitoring and control of individual quantum systems.
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