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Abstract. Symmetrized and dynamical density-matrix renormalization group methods are
used to study the optical properties of the one-dimensional half-filled extended Peierls-Hubbard
model of π-conjugated polymers. We have computed the linear optical conductivity spectrum
and the electro-absorption difference spectrum at strong, intermediate and weak coupling. In
all cases the lowest optical excitation is an exciton whose binding energy and size we have
determined. Only in the strong coupling regime we can see a clear separation between the
exciton peak and the particle-hole continuum in the linear optical spectrum. However, we can
observe the Stark effect under static electric field both at strong and intermediate coupling.

1. Introduction
Linear optical absorption is one of the most-used methods in experimental studies of the
dynamical properties of materials such as π-conjugated polymers [1]. The dynamical DMRG
(DDMRG) method is an accurate and reliable extension of the density-matrix renormalization
group (DMRG) [2, 3] which makes possible the computation of dynamical properties in one-
dimensional strongly-correlated electron models [4–7]. In this paper we report a symmetrized [8]
and DDMRG study of the optical properties of the one-dimensional extended Peierls-Hubbard
(EPH) model [9] which is a generic model for π−conjugated polymers [10–13].

2. Model and method
The one-dimensional extended Peierls-Hubbard model is often used to describe correlation effects
in π−conjugated polymers. It is defined by the Hamiltonian
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where the first term describes the electron hopping between nearest-neighbor sites, ĉ†l,σ and ĉl,σ
represent creation and annihilation operators for electrons with spin σ =↑, ↓ on site l, t and
δ are the hopping and dimerization parameters, respectively. The second term describes the
on-site Coulomb repulsion with interaction parameter U and n̂l,σ is the number operator for
spin σ electrons. The third term describes the nearest neighbor repulsion with strength V and
n̂l = n̂l,↑ + n̂l,↓. Natural units are used: a0 = t = e = h̄ = 1. We consider only the half-filled
band case where the number of electrons N equals the number of lattice sites L. Half-filing
in the ground state is guaranteed by the particle-hole symmetry of the above Hamiltonian.
This Hamiltonian has also a spin-flip symmetry and a spatial reflection symmetry (through the
lattice center). Therefore, each eigenstate has a well-defined parity for the charge conjugation
(Pc = ±1) and spin flip (Ps = ±1) transformations and belongs to one of the two irreducible
representations, Ag or Bu, of a one-dimensional lattice reflection symmetry group.

Using the DMRG method we can calculate ground states and thus the charge gap

Ec(L) = E0(L,L+ 1) + E0(L,L− 1)− 2E0(L,L) , (2)

where E0(L,N) is the ground-state energy of the Hamiltonian in Eq. 1 on a L-site lattice with N
electrons. For L → ∞, Ec gives the energy threshold of the electron-hole excitation continuum.

The optical absorption is proportional to the real part of the linear optical conductivity which
is related to the imaginary part of the current-current correlation function by

σ1(ω > 0) =
Im{χ(ω > 0)}

ω
, (3)
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Here, ȷ̂ is the current operator, η = 0+, |0⟩ is the ground state, |n⟩ are excited states, and E0,
En are their respective energies.

We note that the current operator is invariant under the spin-flip transformation but
antisymmetric under charge-conjugation and spatial reflection. Therefore, if the ground state |0⟩
belongs to the symmetry subspace (Ag, Pc, Ps), only excited states |n⟩ belonging to the symmetry
subspace (Bu,−Pc, Ps) contribute to the optical conductivity. According to selection rules, the
matrix element ⟨0|ȷ|n⟩ vanishes if |n⟩ belongs to another symmetry subspace. The optical gap is
the energy difference Eopt = En−E0 between the lowest optically-allowed eigenstate |n⟩ (i.e., the
lowest eigenstate in the symmetry subspace contributing to the linear optical conductivity) and
the ground state |0⟩. In this paper we consider only the regime of the EPH model where optically
excited states can be described as bound (excitons) or unbound particle-hole pairs. The exciton
binding energy is usually defined as the difference δE = Ec(L) − Eopt between the optical gap
Eopt and the band edge of the particle-hole continuum Ec(L). We use the symmetrized DMRG
method [8] to calculate the lowest optically-allowed excitation and the optical gap. This also
makes possible the computation of static correlation functions for this state.

The DDMRG method [4] allows us to calculate dynamical correlation functions, such as the
r.h.s. of Eq. 4, very accurately over the full frequency range for fairly large systems (here from
L = 32 to 120 sites) with open boundary conditions and a finite broadening factor η (from
η = 0.4 for 32 sites to η = 0.1 for 120 sites). Thus DDMRG actually yields
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Figure 1. Charge and optical gaps versus
the inverse of system lengths for strong,
intermediate and weak couplings (see text).

For η → 0, ση;L(ω) reduces to σ1(ω) as defined in Eq. 3. A very useful consistency check of
the method is to test various sum rules, relating moments of the function σ1(ω) to ground-
state expectation values, which can be evaluated with great accuracy using a standard DMRG
method. For instance, for the Hamiltonian in Eq. 1 with open boundary conditions∫ ∞

0

dω

π
ωσ1(ω) =

1

L
⟨0|ȷ̂2|0⟩ . (7)

All DMRG methods have a truncation error which is reduced by increasing the number m
of retained density matrix eigenstates (for more details, see Ref. [2]). Varying m allows one to
compute physical quantities for different truncation errors and thus to obtain error estimates
on these quantities. For all numerical results presented in this paper the number m of density-
matrix eigenstates ranges between 64 and 256 and DMRG truncation errors are negligible.

3. Linear optical spectrum and excitons
We first investigate the binding energy by calculating the charge gap in Eq. 2 and the optical
gap using symmetrized DMRG for three sets of parameters introduced in [13]. The results are
presented in Figure 1. For very strong coupling (δ = 0.1, U = 50 and V = 15) the optical
and charge gaps are well separated and thus the lowest excitation is clearly an exciton with a
large binding energy δE = 11.2. For intermediate coupling (δ = 0.1, U = 10 and V = 3) and
(relatively) weak coupling (δ = 0.1, U = 4 and V = 1.5) the difference between charge gap and
optical gap is much smaller but we still obtain finite values δE = 0.37 and δE = 0.065 in the
thermodynamic limit L → ∞. Thus we expect an exciton with a small binding energy to be
present in the optical spectrum in the intermediate and weak coupling cases too.

These binding energy results are consistent with our analysis of the nature of the lowest optical
excitation using correlation functions. To measure the exciton size we choose the correlation
function for electron-hole excitations [6, 12]:

Ceh(x) =
∣∣∣⟨n ∣∣∣P̂l,l+x + (−1)|x|P̂l+x,l

∣∣∣ 0⟩∣∣∣2 , (8)

where |0⟩ is the ground state, |n⟩ is the excited state under investigation (here the lowest optical

excitation), and the operator P̂i,j =
∑

σ ĉ
+
i,σ ĉj,σ creates an electron at site i and a hole at

site j. Obviously, Ceh(x) evaluates the importance of an electron-hole pairs with distance x
in the excited state |n⟩. This correlation function is shown in figures 2 and 3 for our three
sets of couplings. In the exact result for the strong-coupling limit U > 2V ≫ t, the ground
state consists in localized electrons (one on each site) while the lowest optical excitation is a
nearest-neighbor pair made of an empty site and a doubly-occupied site with excitation energy
Eopt = U − V [6, 7]. Thus for our strong-coupling parameters we expect the lowest optical
excitation to be a very small exciton. Indeed, we see in figure 2 that Ceh(x) vanishes as soon
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Figure 2. Electron-hole correlation function
Ceh(x) (see eq. 8) in the strong-coupling case.
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Figure 3. Same as figure 2 for two system
sizes L = 32 and 120 for the intermediate-
and weak-coupling cases.

as x > 1. For intermediate and weak couplings we observe that Ceh(x) decreases exponentially
with x which confirms the presence of a bound state.

Rather than fitting the function Ceh(x) to an exponential we define and calculate the average
electron-hole distance ζeh =

∑
xCeh(x)|x|/

∑
xCeh(x). For strong coupling we have obtained

ζeh = 0.56 (in units of the lattice constant a0) while for intermediate coupling ζeh = 1.17,
confirming that the excited state consists in a tightly bound electron-hole pair in both cases in
qualitative agreement with the exact result in the strong-coupling limit U > 2V ≫ t [6, 7]. For
weak coupling the exciton size varies with the the system length L but this finite-size effect is
negligible for the present discussion. We have obtained ζeh = 3.34 with 32 sites and ζeh = 4.10
with 120 sites. Thus the electron-hole pair extends over a few lattice constants. We note that
the exciton size increases only by a factor 10 from strong to weak coupling although the binding
energy decreases by a factor 200. This confirms that there is no simple relation between an
exciton binding energy and its size in correlated systems [6].

Using this analysis of exciton binding energies and sizes we can interpret the optical spectrum
of the EPH model. The reduced optical conductivity spectra ωσ1(ω) calculated with DDMRG
are shown in figures 4, 5, and 6. For strong coupling figure 4 clearly shows a strong exciton peak
around ω ≈ 35 which accounts for most of the total spectral weight. The position of this peak
agrees with the optical gap Eopt = 34.8 obtained with symmetrized DMRG. The logarithmic
scale allows us to see a weak continuum which is well-separated from the exciton peak and
starts at the energy given by the charge gap Ec = 46.0. For intermediate coupling figure 5
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Figure 4. Reduced optical conductivity
ωσ1(ω) for a 32-site lattice (η = 0.4) at strong
coupling (U = 50, V = 15).
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Figure 5. Reduced optical conductivity
ωσ1(ω) for a 120-site system (η = 0.1) at
intermediate coupling (U = 10, V = 3).
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Figure 6. Reduced optical conductivity
ωσ1(ω) for a 120-site system (η = 0.1) at weak
coupling (U = 4, V = 1.5).
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Figure 7. Electro-absorption difference
spectrum at strong coupling (32 sites, η =
0.4) for F = 0.4 and F = 0.7.

also clearly shows the exciton peak around ω ≈ 6 in agreement with the energy predicted by
the symmetrized DMRG results for the optical gap Eopt = 6.08. In that case, however, the
continuum has substantial spectral weight and we do not see the separation between the exciton
and the continuum because the binding energy δE = 0.37 is comparable to the broadening
η = 0.1. Finally, in the weak-coupling case figure 6 shows that the continuum is indistinguishable
from the exciton peak, which is relatively weak. The maximum around ω = 1.4 is compatible
with the optical gap Eopt = 1.33. However, from the optical spectrum (figure 6) alone one
could not decide whether there is an excitonic peak or the continuum has some singularities at
the onset. Nevertheless, our analysis of the correlation function Eq. 8 confirms that the lowest
optical excitation is an exciton. We emphasize that the symmetrized DMRG results for the
lowest optically excited state are always in perfect agreement with the DDMRG results for the
linear optical conductivity, confirming the accuracy of both methods.

4. Electro-absorption
In electro-absorption experiments the optical conductivity defined in Eq. 3 is measured in the
presence of a constant electric field F . The difference spectrum ∆(ω) between the optical
conductivity for F ̸= 0 and for F = 0 provides information about the non-linear optical
properties of the system including optically-forbidden excited states. We have calculated this
difference spectrum in the EPH model using the DDMRG method. To avoid that finite-size
effects (i.e., the discrete energy spectrum) dominate the difference spectrum we have used fields
from F = 0.1 to F = 0.7 which are much larger than those used in experiments.

In figure 7 we show the electro-absorption difference spectrum for the strong-coupling case.
The left structure (below ω ≈ 35) is due to the Stark shift of the 1Bu exciton state while the
right one (above ω ≈ 35) can be explained as the optically-forbidden mAg exciton state because
it is located in the bound-state energy range (i.e., below the continuum onset at Ec = 46.0) [13].
We note that these two structures become stronger with higher electric field F . Thus the EPH
ground state is stable even at such high field as F = 0.7 thanks to its large gap. For the
intermediate coupling figure 8 shows a clear splitting and shift for the lower field (F = 0.1).
Again the low-energy structure (below ω ≈ 6.2) is due to the Stark shift of the 1Bu exciton.
The broad peak and oscillations observed above ω ≈ 6.2 are explained by the optically-forbidden
mAg exciton state and excitations in the particle-hole continuum which are known to give rise
to an observable oscillatory signal in the difference spectrum [13]. For the higher electric field
(F = 0.5) one cannot interpret the difference spectrum. The presence of a signal at very low
energy ω ≈ 0.3 well below the optical gap Eopt = 6.08 demonstrates that the ground state has
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Figure 8. Electro-absorption difference
spectrum at intermediate coupling (120 sites,
η = 0.1) for F = 0.1 and 0.5.
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Figure 9. Electro-absorption difference
spectrum at weak coupling (120 sites, η = 0.1)
for F = 0.1 and 0.5.

been modified by the presence of the electric field. Thus this electric field is already too strong
for an insulator with a charge gap Ec = 6.45. In the weak coupling figure 9 shows that even a
field of F = 0.1 already destabilises the ground state of the EPH model with a gap of Ec = 1.39.
Therefore, we have not been able to gain additional information about the optical properties
using electro-absorption in that case.

5. Conclusion
We have investigated the optical properties of the extended Peierls-Hubbard model using various
DMRG techniques to compute the exciton binding energy, electron-hole correlations, linear
optical spectrum and electro-absorption difference spectrum. In the strong-coupling regime all
results confirm that the lowest optical excitation is a small exciton with a high binding energy as
predicted by an exact analysis in the strong-coupling limit. In the intermediate-coupling regime
we cannot observe the separation between exciton peak and electron-hole continuum in the
linear optical spectrum directly because of the DDMRG broadening η > 0. However, all other
results confirm that the lowest optical excitation is a small exciton with a low binding energy.
Finally, in the weak-coupling regime we have found a very small but finite binding energy and
an extended but finite electron-hole separation which confirm the presence of an excitonic state.
However, we could not observe any clear signature of this exciton neither in the linear optical
spectrum nor in the electro-absorption spectrum.
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