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Abstract. A novel and efficient method to mitigate the challenges posed by the Coulomb
potentials when solving three-dimensional effective Schrödinger equations for molecules or solids
is presented. This approach assumes a product ansatz for the wave function, where the first
factor satisfies the cusp condition, while the second factor is assumed to be smooth. This
ansatz leads to a regularized non-singular potential and a transformed energy functional. Highly
accurate finite element ground state energies obtained with this functional using two-and three
dimensional calculations for the hydrogen molecular ion are also presented.

1. Introduction

Efficient and reliable methods to solve the effective three-dimensional Schrödinger equation
are important for density functional or Hartree Fock methods to calculate the properties of
molecules and solids. To judge the accuracy of methods using Gaussian basis functions, pseudo
potentials[1] or linearized augmented plane waves(LAPW) [2], a method that promises to be less
basis dependent, is desirable. The method of finite elements [3] can serve this purpose, since its
convergence can be improved systematically.

Any method to solve an effective Schrödinger equation in three dimensions faces the following
challenges due to the Coulomb singularities at the nuclei:

(i) The cusp conditions at the nuclei[4]: limri→0
dfC/dri
fC(ri)

= −Zi have to be satisfied.

(ii) The wave functions will have many nodes close to the nuclei.

The competing methods mentioned also have some disadvantages: pseudopotentials have to be
determined for each atomic species, the matching conditions for LAPW can become involved
and Gaussian basis functions are in principle unable to satisfy the cusp conditions.

In this contribution a novel and efficient method to deal with the above mentioned challenges
by regularization of the potential is outlined and results obtained for the ground state energy
of the hydrogen molecular ions using the method of finite elements are shown. The remainder
of the contribution is organized as follows: In section 2 the regularization approach is outlined
, in section 3 the test case of H+

2 is dicussed, in section 4 the method of finite elements as used
in this contribution is sketched, while in sections 5 and 6 results obtained via two-and three
dimensional finite element calculations are given, followed by conclusions.



2. Regularization of the Potential

In the following we consider a system consisting of N electrons and A nuclei in the Born-
Oppenheimer approximation with the Hamiltonian

H = −
N
∑

i=1

∇2
i +

N
∑

i>j=1

2

|ri − rj |
−

N
∑

i=1

A
∑

j=1

2Zj

|ri −Rj |
, (1)

where we use atomic units, i.e. measuring distances in aBohr and energies in Ryd= 13.6 eV.
In order to mitigate the Coulomb singularities we use the following product ansatz for the

wave function:
Ψ(r) = fC(r)Φ(r) , (2)

where fC satisfies

lim
ri→0

dfC/dri
fC(ri)

= −Zi , ri = |r−Ri| (3)

and Φ is expected to be smooth.
Substituting the product ansatz into the standard energy functional for Ψ we obtain a

transformed functional for Φ as

E(Φ) =
〈fC∇Φ|fC∇Φ〉+ 〈fCΦ|Ṽ (r)|fCΦ〉

〈fCΦ|fCΦ〉
, (4)

Ṽ = V −
∇2fC
fC

. (5)

Choosing for fC the form

fC(r) = 1 +
A
∑

i=1

ci exp (−2Ziri) , ri = |r−Ri| , (6)

the ci can be determined from the following linear system of equations

N
∑

j=1

[δij − νij exp (−2Zi |Ri −Rj |)] cj = 1 , νij = 1− δij , (7)

which results from eqn.(5) by requiring the Coulomb singularities to be removed from the
potential. The resulting potential has singularities replaced by kinks as shown below by the
lower curve for H+

2 along the z-axis connecting the nuclei, while the upper curve shows fC.



3. The test case H+
2

Two protons and an electron constitute the simplest possible molecule. In the Born-
Oppenheimer approximation the nuclei are considered as fixed. In this section we consider
the system in those coordinates, that we will use for our calculations and in a third one, that
has been used for highly accurate numerical benckmark calculations.

In Cartesian coordinates the Hamiltonian for an internuclear distance of R = 2aBohr, very
close to the equilibrium value, reads

H = −∇2 −
2

|r−R1|
−

2

|r−R2|
+ 1 , (8)

while in cylindrical coordinates ρ,z and φ with nuclei on z-axis at z = ±1 and for m = 0, the
Hamiltonian is two-dimensional, i.e.

H = −
∂2

∂ρ2
−

1

ρ

∂

∂ρ
−

2
√

ρ2 + (z + 1)2
−

2
√

ρ2 + (z − 1)2
+ 1 . (9)

Highly accurate benchmark numerical solutions for ground state energy and wave function were
obtained by Peek in the 1960’s using elliptic coordinates [5]

λ =
1

2
(r1 + r2) , 1 ≤ λ ≤ ∞ (10)

µ =
1

2
(r1 − r2) , −1 ≤ µ ≤ 1 (11)

r1 = |r−R1| , r2 = |r−R2| . (12)

leading to the Hamiltonian

H = −
1

λ2 − µ2

[

√

λ2 − 1
∂

∂λ

(

√

λ2 − 1
∂

∂λ

)

+
√

1− µ2
∂

∂µ

(

√

1− µ2
∂

∂µ

)]

−4
λ

λ2 − µ2
+1 , (13)

which allows separation into two ordinary differential equations.

4. Method of Finite Elements

The variational problem obtained in section 2 will be solved using the method of finite elements
[3]. We divide the region of interest into rectangular (for 2D) or box-shaped (for 3D) elements

and expand Φ in terms of interpolating polynomials on each element. Applying the variational
principle then leads to a symmetric generalized eigen value problem

Hu = λUu (14)

with N ≈ 104 − 106. Here u is the coefficient vector of the expansion in the finite element
basis set and the matrices H and U are sparse. The lowest eigenpair of the eigen value
problem is obtained using the symmetric Jacobi Davidson method as provided by the PySparse

package(http://pysparse.sourceforge.net). This method does not factorize matricesH and U and
therefore needs less memory then traditional methods, that use factorization.

5. Calculations in Three Dimensions

We consider the problem in Cartesian coordinates as described by eqn.(8). Since higher
derivatives of φ must be discontinous at the nuclei they must be at the corners of elements.
The grid for the finite element method is created on the volume V = [−xmax, xmax]

3 as the
tensor product of seperate x,y and z grids. The grids are compressed quadratically around the
nuclei and the number of elements is chosen such, that elements at the nuclei have sides smaller
than η. For H+

2 with the nuclei positioned at (−1, 0, 0) and (1, 0, 0) a typical grid is shown below
in its projection on the x− y plane:



The drawback of the above tensor-grid is however that small elements are used in regions, where
they are not really needed.

For the calculations interpolation polynomials up to order p = 6 order were used and
the matrix elements were determined using Gauss-Legendre integration with up to nGL = 16
points in each direction. The code was written in Python(www.python.org) with the numerical
extension numpy(numpy.scipy.org) and some Fortran77 linked with f2py(www.scipy.org/F2py).
The largest grid had 26× 22× 22 = 12 584 elements. leading to generalized eigen value problem
of N = 2659955. The resulting sparse matrices were handled using the Pysparse Python
extension and the lowest eigenpair was calculated using JDSYM in about 15000 CPU seconds
on the high performance cluster of the University of South Africa, while the time to compute
the matrix was approximately 85000 CPU seconds.

In Table 1 the results obtained for the ground state energy for different discretization and
integration parameters are given. It is evident, that a reasonable accuracy of 10−5 can be

xmax p η nGL Egs ∆E TCPU [s]

8 4 0.50 6 −1.2052629814026 5.448 10−6 191
8 4 0.25 6 −1.2052675549928 8.740 10−7 435
8 4 0.25 12 −1.2052675476430 8.813 10−7 2024

12 6 0.15 12 −1.2052684289614 2.845 10−11 33665
12 6 0.12 16 −1.2052684289849 4.92 10−12 107152

Table 1. Ground state energies, their deviations from the value obtained by Peek[5] and run-
time in CPU seconds for different grid and integration parameters

achieved using relatively modest resources. The best energy obtained in the last line of the
table agrees with the the literature result of Egs = −1.2052684289898 Ryd [5] to 11 digits.

6. Calculations in Two Dimensions

As mentioned in the previous section the tensor-grid employed for the three-dimensional
calculation is computationally not very efficient. The open source project hermes for adaptive h-
p-FEM (www.hpfem.org) provides libraries which allow for hexaedral grids with hanging nodes.
Since H+

2 has an axis of symmetry it can also be investigated using cylindrical coordinates and
the Hamiltonian given in eqn.(9). As a first step towards improving the grid in three dimensions
the calculation was done using the two dimensional version of hermes, namely the C++ library
hermes2d.

The transformed potential is then given by

Ṽ = −
2

√

ρ2 + (z + 1)2
−

2
√

ρ2 + (z − 1)2
−

∇2fC(ρ, z)

fC(ρ, z)
+ 1 (15)



Figure 1. Grid used for region [0, 2]× [0, 2] in finite element calculation

Figure 2. Function Φ for the hydrogen molecular ion

Using the C++ hermes2d library and also employing the JDSYM eigen-value solver the
variational problem defined by eqn.(4) was numerically solved on the domain (ρ, z) ∈ [0, 16] ×
[0, 16] where symmetry with respect to z = 0 was used. The grid was refined towards the
proton at z = 1 as shown in Fig. (1), where the hanging nodes [6], that allow for efficient
subdivision also of rectangular grids, are evident. The Calculation was performed on an Dell
centrino laptop with 4GB of RAM. The most accurate result obtained for p = 6 and N = 45396
was Egs = −2.2052684289897795 Ryd, which agrees to 13 digits with the literature value by
Peek[5] and TCPU was 217 seconds. The function Φ obtained for these parameters is shown in
Fig. (2) together with the grid.

The convergence of the discretization error for the finite element method of order p is expected
to satisfy ∆E = h2p[7, p. 232]. To investigate the convergence calculations were also done with
p = 3 and p = 4 respectively resulting in the log-log plots shown in Figs. (3) and (4). The slopes
are obtained as 5.87± 0.07 and 8.22± 0.12 respectively, compatible with the expected values of
6 and 8.



Figure 3. Log-log plot of ∆E versus h for p = 3

Figure 4. Log-log plot of ∆E versus h for p = 4

7. Conclusions

In this contribution it has been clearly demonstrated , that the singularities connected to the
Coulomb potentials at the nuclei can be mitigated using the suggested product ansatz for the
wave function. The resulting transformed variational problem for H2+ has been solved both
in Cartesian and cylindrical coordinates using the method of finite elements, yielding highly
accurate energies.
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