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Abstract. Recently, in joint work of S. Attal, C. Sabot, F. Petruccione and I. Sinayskiy the
concept of Open Quantum Random Walks was introduced, by taking into account dissipation
and decoherence that occur in open quantum systems. Open quantum random walks are
formulated in terms of discrete completely positive maps for the density matrix. These walks
are simulated efficiently with the help of quantum trajectories. Here we report the unravelling
of some simple open quantum random walk.

1. Introduction

It is well known that random walks are a very useful mathematical tool, which found successful
applications in physics, computer science, economics and biology. The Unitary Quantum
Random Walk (UQRW) [1, 2] generalized this concept to the quantum domain [3] and widely
applied in quantum computing [4]. Recently, experimental realizations of UQRW have been
reported [5, 6, 7, 8]. For the last few years attempts were made to take into account decoherence
and dissipation in the quantum walks formalism [9]. But, in all these approaches decoherence
and dissipation is treated as a modification of the unitary quantum walk scheme, the destructive
influence of which needs to be minimized and eliminated. The general framework of quantum
stochastic walks was proposed [10], which incorporates unitary and non-unitary effects of the
quantum Markovian dynamics.

Recently, a formalism for discrete time quantum walks was introduced [11], that naturally
includes the behavior of open quantum systems. The formalism suggested is similar to the
formalism of quantum Markov chains [12] and rests upon the implementation of appropriate
completely positive maps [13].

In this paper, we will briefly review the concept of the OQRWs and for a particular example
we will show the simulation of an OQRW in terms of quantum trajectories.

2. Open Quantum Random Walks

The dynamics of a walker with internal degrees of freedom in the Hilbert space H on the
nodes (i, j) (i, j are elements of a finite or infinite countable set) of a graph is defined in terms
of operators Bi

j ∈ H. These operators describe the transformation in the internal degree of
freedom of the walker due to the jump from node j to node i. The basic idea of the OQRW is
to assume that for each j

∑

i

Bi
j

†
Bi

j = I,



where Bj
i ∈ H and I denotes the identity in the appropriate space. This constraint has to be

understood in the following way: the sum of all the effects leaving site j is I. The Hilbert
space of states specified by the set of nodes will be denoted by K and will be assumed to have
a basis |i〉. Obviously, this construction is a natural generalization of the “classical” Markov
chain concept. In order to describe not only the change in the internal degrees of freedom of the
walker, but also the transitions from node j to node i it is convenient to introduce the operators

M i
j = Bi

j ⊗ |i〉〈j|, which satisfy
∑

i,jM
i
j

†
M i

j = I. The OQRW can now be defined in terms of
the following completely positive map on H⊗K

M(ρ) =
∑

i

∑

j

M i
j ρM

i
j

†
.

If we assume the initial density matrix of the system to be of the form

ρ =
∑

i

ρi ⊗ |i〉〈i|,

with
∑

iTrρi = 1, the iteration formula for the OQRW from step n to step n+1 can be expressed
as

ρ[n+1] = M(ρ[n]) =
∑

i

ρ
[n+1]
i ⊗ |i〉〈i|,

where ρ
[n+1]
i =

∑

j B
i
jρ

[n]
j Bi

j

†
.

3. Unravelling of the OQRW in terms of Quantum Trajectories

To introduce the quantum trajectories formalism we start by considering a particular case of
initial state of the system, namely, a walker that is localized at a single site,

ρ0 = ρ⊗ |i〉〈i|.

After one step the state of the walker will be given by

ρ1 =
∑

j

(Bj
i ρB

j
i

†
)⊗ |j〉〈j| .

The probability to find the walker at the site j is given by pj = tr(Bj
i ρB

j
i

†
). If one performs

measurements of the position of the walker at site j the state of the walker reads

1

pj
(Bj

i ρB
j
i

†
)⊗ |j〉〈j| .

Repetition of this procedure gives rise to a classical Markov chain, valued in the set of states of
the form ρ⊗ |i〉〈i| . One can see that this procedure on average will simulate a master equation
driven by M:

E [ρn+1] =
∑

j

pj
1

pj
(Bj

i ρnB
j
i

†
)⊗ |j〉〈j| =

∑

j

(Bj
i ρnB

j
i

†
)⊗ |j〉〈j| = M(ρn) .

In particular, if the initial state of the system is the pure state ρ = |φ〉〈φ| ⊗ |i〉〈i|, then the
system remains in a pure state. It is easy to see that, any initial pure state |φ〉 ⊗ |i〉 will jump
randomly to one of the states

1
√

p
j
i

B
j
i |φ〉 ⊗ |j〉



with probability
p
j
i = ||Bj

i |φ〉||2 .
We have a classical Markov chain valued in the space of wave functions of the form |φ〉⊗ |i〉. On
average, this random walk simulates the master equation driven by M.

As illustration of this unravelling we consider an open quantum random walk on a line. In
this case the transition matrices Bj

i are chosen to be,

Bi−1
i =

(

1 0

0
√
3
2

)

, Bi+1
i =

(

0 1
2

0 0

)

,

and the initial state of the walker is

|ψ0〉 =
1√
2
(|10〉 − |01〉) ⊗ |0〉.

The results of the simulations are presented in figure 1. Figure 1(a),(b) and (c) we show three
different quantum trajectories. One can clearly see the different qualitative character of some
of them. The average over 1000 realizations is shown in the figure 1(d).

More work is in progress in applying the open quantum random walk formalism to quantum
computing and quantum state transfer problems.

Figure 1. Simulation of the OQRW in term of quantum trajectories. The examples of the
trajectories are shown on the curves (a)-(c), curve shows (d) average over 1000 trajectories
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