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Abstract. Using molecular dynamics, we study static and dynamic properties of isolated
linear polymers in good solvent conditions, which are confined between two parallel, corrugated
walls. If the distance between the confining walls is so small that the polymer collapses into a
single layer, the diffusion constant D is found to scale linearly with the degree of polymerization
N . The proportionality constant is sensitive to wall-wall and wall-polymer commensurability.
Static properties, such as out-of-plane monomer density profile n(z) and radius of gyration Rg,
obey the scaling laws predicted by Flory’s mean field theory.

1. Introduction

Understanding the diffusion of polymers that are confined or constrained by solid walls is not
only theoretically challenging [1, 2] but also relevant in various technological applications such
as in tribology [3, 4], narrow-channel macromolecular devices [5, 6], and for the possibility to
separate macromolecules of different size via confinement [7]. In this context two cases are widely
studied: (a) adsorbed linear polymers [8, 9, 10, 11, 12, 13, 14, 15] and (b) polymers confined
between two surfaces [16, 17, 18, 19, 20] Experimental advances in this field are made possible
due to the application of fluorescence spectroscopy, which allows one to measure, for instance,
the mobility of DNA [9, 18, 19, 20] and that of phospholipids [12] on lipid bilayers with the
prospect of their use in nano-technology.

Static and dynamic properties of polymers are commonly rationalized in terms of scaling laws
[21]. In this paper, we will present molecular dynamics simulations of polymers confined between
two parallel, corrugated walls, and examine the effect of wall friction on the center of mass
diffusion of the polymers in terms of scaling laws. To produce the correct polymer configurations,
we will include the solvent implicitly in the (thermodynamic) interactions between different
monomers, but neglect any (implicit) hydrodynamic interaction mediated by the solvent. The
latter has to be done in order for us to single out the wall-induced damping. As our simulations
will be carried out in equilibrium, and as we are interested in a linear response quantity, namely
diffusion, the two damping mechanism can be considered to be additive.

For our study, we will employ the same generic model as in our previous works [13, 14, 15]
on polymer diffusion on a single surface. These studies reproduced successfully a variety of



Table 1. Different cases studied in this work. A relative orientation of 90◦ renders two hexagonal
surfaces incommensurate. d is nearest-neighbor distance between surface atoms. b̄ represents
the intrinsic bond length for a bead spring polymer.

cases wall orientation d b̄

case 1 incommensurate 1.201 0.97
case 2 commensurate 1.201 0.97
case 3 incommensurate 0.970 0.97
case 4 commensurate 0.970 0.97

experimental observations, among others: (a) The D ∝ N−1.5 relationship for polymers on
a solid surface [10], (b) the D ∝ N−1 relationship for polymers on an on-overage flat liquid
surface [9] and/or lattice models, and (c) the non-monotonic change of mobility of polymers
with concentration [11]. An important aspect in our previous work, in particular that on the
diffusion of single polymers, turned out to be the commensurability between polymer and surface.
This is why bond lengths commensurate and incommensurate with the lattice constant will be
considered here too. In addition, the commensurability between the walls may play a role,
as even an ideal gas can pin two commensurate walls that do not interact directly with one
another [4]. Therefore, we will investigate both, commensurate and incommensurate confining
walls.

2. Model and Method

As usual, we assume that chemical detail does not affect the values of critical exponents. This
is why we will base our study on a simple, albeit widely used particle-based continuous-space
representation of a polymer molecule developed by Kremer and Grest [22] also known as bead-
spring model. A more detailed model related discussion is provided in Ref. [13, 14, 15]. In
this model, good solvent conditions can be mimicked by having each two monomers interact via
a truncated and shifted (purely repulsive) Lennard-Jones (LJ) potential. Adjacent monomers
also interact with an additional finitely extensible nonlinear elastic (FENE) potential. The
parameters of the potential (i.e., LJ + FENE) is chosen such that no unphysical bond crossing
is allowed [22]. In the following, we will express all physical quantities in units of Lennard-Jones
(LJ) energy ε, LJ length σ, and mass m of individual monomers. This model gives rise an
effective bond length of 0.97 [22].

Temperature is controlled using a Langevin thermostat, which is only applied to the z-
component of the monomer’s motion, i.e., normal to the interface. Unless stated otherwise, the
thermal energy is set to 0.5. The damping coefficient is set to 0.1 in reduced units.

The bead-spring chain is confined between two surfaces, each of which consists of a discrete
hexagonal plane, e.g., a (111) plane of a face-centered-cubic solid. Wall atoms are pinned to
their hexagonal lattice sites. The geometry of the surface is square with fixed linear dimensions
75.0. In the case of the nearest neighbor distance 0.97, we increased the number of unit cells
in the lateral dimension to attain same linear dimensions 75.0. Periodic boundary conditions
are applied only along the lateral directions, i.e., in the (x, y)-plane. In each MD run, the
separation δ between the two walls is kept fixed. The orientations of the two surfaces are usually
parallel, however, upon extreme confinement, i.e., for δ ≤ 7.5, we also investigate effectively
incommensurate interfaces. These are produced by rotating one of the two hexagonal walls by
90◦. We studied four cases as listed in table 1.

The interaction between a wall atom and a monomer is the same LJ potential as the one acting
between two monomers. When investigating the dependence of an observable as a function of δ,
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Figure 1. (Left panel) Out-of-plane monomer density profile, n(z∗), for different inter-wall
distances, δ. Here z∗ = z̃/δ̃ with δ̃ = δ − 1.5 and z̃ = z − 1.5/2. The dashed curve is a fit based
on Eq. 1 using the exact value ν3 = 0.587 [21]. (Right panel) (a) The (apparent) exponent ν as
obtained for different inter-wall distances δ at N = 220. ν3 is calculated by fitting n(z) to the
power-law z1/ν3 at small values of z/δ. (b) Absolute, relative difference between apparent and
exact exponent ν3, (0.587 − ν3)/0.587, as a function of δ. The arrow indicates the value for δ
that satisfies equation (2). (c) (Apparent) exponent ν3 for different chain lengths calculated for
δ = δ∗. The exact exponent is represented by the horizontal dashed line.

we restrict the degree of polymerization to the two values N = 160 and N = 220. The distance
between the walls is varied from δ = 2.5 to δ = 26.5. When keeping δ fixed to study chain length
effects, we vary N within 40 ≤ N ≤ 310.

The equations of motion are integrated using a fifth order predictor-corrector method with
time step ∆t = 0.005. Simulations are usually equilibrated for a few hundred million MD time
steps and then observation is carried out over another 50 · 106 MD time steps, i.e., over a time
span 2.5 · 105 (in LJ units). During this observation period, quantities of interest such as the
the radius of gyration Rg, diffusion coefficient D and out-of-plane monomer density profile n(z)
are measured.

3. Model validation

We would like to start by demonstrating that the used model produces the proper polymer
configurations and also that the employed degree of polymerization suffices to be within the
proper scaling regime. For this purpose, we will investigate the density profile as well as the
in-plane and out-of-plane radius of gyration, which depend on δ via well-established power laws
[21].

3.0.1. Monomer density profile

The monomer density n(∆z) of a single polymer near a flat, impenetrable wall has been
predicted by Flory in a mean-field theory to follow a n(∆z) ∝ ∆zν3 power law, where νd is given
as, νd = 3/(d + 2), so that ν3 = 0.6. Here ∆z denotes the distance of a monomer from the wall.
The value for the exact exponent, namely ν3 = 0.587 [21], is fairly close to the mean-field value.

When two walls are present the following dependence of the density on the z-coordinate is
observed [21]:

n(z∗) ∝

(

1

4
− z∗2

)1/ν3

, (1)



Table 2. Apparent exponent ν3 for different wall separations and chain lengths. Included is
information on the radius of gyration in the bulk solution, Rgb.

N Rgb δ∗ ν3

100 7.5 ± 0.3 16.5 0.591
160 9.6 ± 0.4 21.5 0.593
220 11.6 ± 0.7 25.0 0.586
310 14.2 ± 0.8 30.0 0.587

Theory 0.587

where we have normalized the value for z with δ and also subtracted a correction due to the
finite size of wall atoms, specifically z∗ = z̃/δ̃ with δ̃ = δ − 1.5 and z̃ = z − 1.5/2. The rationale
for this correction is the following one: The atoms of the bottom solid sit at z = 0 while those
at the top solid sit at z = δ. Monomers can approach these positions only up to a distance that
is close to the wall-atom monomer Lennard-Jones interaction distance. Thus the lowest value
of z̃ where monomers can sit is close to zero and the largest value is close unity. Precise values
cannot be stated, because walls are slightly corrugated and also because the walls are not ideally
hard. In the left panel of Fig. 1, we show the normalized data for n(z). It can be appreciated
that the data for different cases collapse onto one master plot which is consistent with Eq. (1).

It is well known, that the exponent ν3 can only be obtained at sufficiently large inter-wall
separation [17, 21]. In our simulations, we observe that the exact exponent can be reproduced
within 1% if the following inequality is obeyed:

δ ≥ δ∗ = 2Rgb + 1.5σsp, (2)

where Rgb is the bulk radius of gyration. To validate the claim that the choice δ ≥ δ∗ will lead to
a very good approximation to the exact value of ν3, we included part (a) in Fig. 1, whose main
part shows how the apparent exponent ν3 changes with δ at fixed N = 220. The more detailed
analysis in inset (b) shows that the deviation between our data and the predicted exponent
decreases with δ, while inset (c) demonstrates that Flory’s exact exponent can be observed
within 1% accuracy for different chain lengths N as long as our rule, Eq. (2), is obeyed.

The data leading to part (c) of Fig. 1 is shown in table 2. Included are also the values we
obtained for the bulk radius of gyration Rgb, which was calculated from single polymers in the
absence of any confining walls.

3.0.2. Chain conformation We now direct our focus on the chain conformation. The quantity
that best describes the polymer conformation in simple terms is the tensor of gyration Tαβ(δ),

Tαβ(δ) =
1

N

〈

N
∑

i=1

(Riα − R̄α)(Riβ − R̄β)

〉

, (3)

where α and β indicate the Cartesian indices. Riα is the αth component of the ith monomer
position, and R̄α is the αth component of the center-of-mass of the chain. In the following, we
will distinguish between the in-plane radius of gyration, R2

g|| = Txx + Tyy, and the out-of-plane

radius of gyration, R2
g⊥ = Tzz.

The following scaling laws are established [17, 21] for in-plane and out-of-plane radius of
gyration in the limit of small δ:

R2
g||(δ) ∝ δ−2(ν2−ν3)/ν3 , (4)
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Figure 2. (color online) Nor-
malized radius of gyration squared
as a function of normalized inter-
wall distance for two different chain
lengths. Where δ̃ = δ − 1.5 in the
case of solid symbols and open sym-
bols correspond to δ̃ = δ. Lines are
power law fits according to Eqs. (4-
5) and mean-field values for Flory’s
exponents.

and
R2

g⊥(δ) ∝ δ2, (5)

where νd is Flory’s exponent in d dimensions and defined as 3/(d + 2).
In the analysis of our simulation data, we will compare the numerical data to the mean field

value of νd rather than to the exact exponent ν [21], because our error bars are not sufficiently
small to discriminate between the two. Results are depicted in Fig. 2 for two different chain
lengths. By normalizing the value of δ, Rg||, and Rg⊥ with Rgb, results for the two different
chain length could be collapsed. In addition, by subtracting the excluded-volume “offset” of
1.5σsp from δ, the power-law dependence R2

g|| ∝ δ̃−1/2 and R2
g⊥ ∝ δ̃2 could be borne out on a

larger domain at small wall separations. Of course, at large values of δ̃, the scaling laws valid for
small δ̃ must break down, because for δ̃ ≥ Rgb, the configurations become bulk-like, and thus
R2

g|| approaches 2R2
gb/3 and R2

g⊥ approaches R2
gb/3.

4. Results for polymer dynamics

Having reproduced the known static behavior of a confined polymer chain, we now direct our
focus on dynamic properties. We investigate how D changes with N at fixed separation between
two walls. Results for δ = 2.5 are summarized in Fig. 3, in one case we also reduce δ = 2.0. For
polymer bond lengths commensurate with the walls, we had to increase the temperature from
T = 0.5 to T = 0.6, in order to speed up polymer diffusion for accurate measurements. The
data can be fit via Rouse dynamics, namely D ∝ N−1, in all cases for δ = 2.5. Looking into
the simulation snapshot we find that polymers essentially form a flat monolayer configuration.
Therefore, this flat polymer is “rubbing” against the repulsive walls so that the damping (i.e.,
the inverse diffusion constant) of the polymers centroid is simply proportional to the number of
monomers in contact with the surfaces. This argument explains why we observe a scaling linear
in N .

It may be worth comparing these results to those found when a single polymer is strongly
adsorbed onto only one wall, which however is so strongly adhesive that the polymer collapses
into a single layer. For the strongly adhesive single wall, commensurability plays a role, while
in the new study it does not. Specifically, for a single adhesive wall, we had found D ∝ N−1

for a polymer whose bond lengths are commensurate with the substrate and D ∝ N−1.5 for the
incommensurate case. Thus, our new simulations show similarity with the commensurate, single-
wall case and so there appears to be a contradiction: If two walls are commensurate with each
other but incommensurate with the polymer, then in the limit of a single-layer confinement,
one should produce the N−1.5 and not the 1/N scaling of D. This issue can be resolved as
follows: In our previous work we had shown that the N−1.5 is only born out if N is sufficiently
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Figure 3. (color online) In-
plane chain lateral diffusion D as a
function of chain length N . Results
are shown for both commensurate
and incommensurate surfaces as
mentioned in table 1 for δ = 2.5.
For cases 3 and 4 we increase the
temperature from T = 0.5 to T =
0.6. Line are fits with the exponent
shown in caption.

large and/or the walls sufficiently rough. Small roughness first produced N−1 scaling at small
N before crossing over the N−3/2 dependence. The small-roughness regime is what we see in
the present study at δ = 2.5. If we reduce the separation between the two walls to δ = 2,
we recuperate the N−3/2 scaling law for an incommensurate polymer between incommensurate
surface, because at this small separation, corrugation becomes large.

5. Conclusions

We use molecular dynamics simulations to study the static and dynamics of confined polymer
chain. Static properties, such as radius of gyration and out-of-plane monomer density profile,
follow the predicted scaling behavior. Chain length dependent lateral dynamics follow Rouse
behavior, unless the confinement is extreme, in which case D ≈ N−3/2 for incommensurate
polymer-wall geometries.
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[13] D. Mukherji and M. H. Müser, Phys. Rev. E. 74, 010601(R) (2006).
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