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Abstract. Analytical equations of motion, in the form ẋ = f(x, t), were derived for a
damped harmonically driven triple plane pendulum. This form of the equations displayed
the nature of the non-linear coupling and provided a basis for physical interpretation. It also
facilitated the derivation of the Jacobian matrix in analytical form, an essential result for the
accurate numerical computation of Lyapunov exponents. Sets of optimised initial conditions
and parameters were derived by applying Nelder-Mead simplex optimisation to the calculated
Lyapunov exponents. As an example of the method, it was used to calculate the initial conditions
for a periodic mode of the un-damped pendulum. It was also used to demonstrate that the
maximum Lyapunov exponent of the pendulum could be made to vary from zero, for a periodic
mode, to above ten, for a hyperchaotic mode. Numerical simulations were coded in Python and
used to visualise the results.

1. Introduction
Pendulums of varying complexity, ranging from the textbook example of a simple pendulum
to much more complicated coupled systems, play an important role in mechanics, mainly
because they illustrate interesting nonlinear dynamical effects in ways that often can be analysed
mathematically. Although it is not well known, chaotic dynamics can even be observed in a
simple pendulum, when it is externally excited [1].

Recently there have been a number of experimental and theoretical investigations aimed at
understanding the stability of human gait (manner of stepping) through the use of inverted
pendulum models [2, 3]. A number of experimental investigations of either simple or coupled
electro-mechanically driven pendulums have also been undertaken, with the view of developing
more precise conditions for the onset of chaos in these systems [4, 5]. On the technological front,
a triple pendulum suspension system has been used to seismically isolate optical components
on the GEO 600 interferometric gravitational wave detector [6]. This invention has allowed the
detector to achieve a seismic noise sensitivity level which is well below the level from thermal
noise.

Coupled pendulums with obstacles have been used to model real mechanical systems that
exhibit nonlinear phenomena such as resonances, jumps between different system states, various
continuous and discontinuous bifurcations, symmetry breaking and crisis bifurcations, pools of
attractions, oscillatory-rotational attractors, etc. In reference [7], for example, it is shown that
a triple pendulum model can provide insight into the real, highly-complicated dynamics of a



piston connecting-rod crankshaft system. In view of the limited space available for the present
article, it is not possible to provide a complete review of related work. A more comprehensive
review may be found in reference [8].

Although the triple pendulum has been the subject of an ongoing investigation by
Awrejcewicz et al. [1, 8, 9] and Kudra [10], the chaotic and hyperchaotic regimes of the
pendulum have yet to be fully explored. In previous work, such as [9], the highest two positive
Lyapunov exponents were reported to be 0.06 and 0.01 (see table 2 of reference [9]). Since the
chaos-hyperchaos transition is defined by when the second Lyapunov exponent becomes positive,
Awrejcewicz et al. [9] correctly classify the attractor as hyperchaotic; however, it the present
work it will be shown that in fact much higher values for the maximum Lyapunov exponent
(above ten) are possible through optimisation.

This paper is organised as follows. In section 2, the equations for a triple pendulum are
derived in a form that is well suited for the analysis of chaotic dynamics and for the use of
optimisation. In section 3, details of the computational implementation of the optimisation
calculation and visualisation are presented. Preliminary results for optimised periodic and
hyperchaotic modes of the pendulum are presented in section 4. In the concluding section
5, it is noted that optimisation may provide a useful way of controlling the degree of chaos in
non-linear dynamical systems. The method developed here for the pendulum could thus find
applications in other non-linear systems ranging from biophysics to information technology.

2. Theory and analysis of the governing equations
Figure 1 shows a visualisation of the triple plane pendulum. It was generated from a screen-shot
of a three-dimensional animation of the pendulum, created by using the Visual module in the
Python programming language [11]. The pendulum consists of a series of absolutely rigid bars
which form the three links of the pendulum (shown in red, green and blue). Additional point-like
masses are attached to the bottom of each link (shown in yellow).

Figure 1. Visualisation of the triple plane
pendulum. The pendulum is made of absolutely
rigid bars (two of length �1, two of length �2
and one of length �3) to which cylindrical point-
like masses are attached (two of mass m1

2 , two of
mass m2

2 and one of mass m3). The pendulum
is assumed to be under the influence of gravity
and in vacuum. The three pivot points may exert
viscous damping, with coefficients c1, c2 and c3.
Also shown in the figure is the trajectory followed
by the centre of m3.

The governing equations for the triple plane pendulum have been derived in reference [9].
They have the following matrix form:

M (ψ) ψ̈ + B (ψ) ψ̇
2
+ Cψ̇ + D (ψ) = F (t) (1)

Equation (1) is written in the notation of reference [9], in which the angles between the vertical
and each link of the pendulum are denoted by ψi (i = 1, 2, 3), with ψ = (ψ1, ψ2, ψ3)

T.
Instead of retaining the form of equation (1), a computer algebra system, Maple 11, was used

to invert the matrix M in order to solve for ψ̈. By then making the substitutions x1 = ψ1,
x2 = ψ2, x3 = ψ3, x4 = ψ̇1, x5 = ψ̇2, and x6 = ψ̇3, the equivalent first order system:

ẋ = f (x, t) (2)



was obtained. Equations (2) are given explicitly in in Appendix A. Having analytical expressions
for the governing equations in the form of (2) presents two important advantages.

Firstly, it can provide insight into the unusual nature of the non-linear coupling in this system.
If one performs a power series expansion of the factor 1/D on right hand side of equations (A.4)
to (A.6), one sees that the masses are coupled by terms involving products of sine and cosine
functions (which are bounded by ±1) with either constants or terms linear or quadratic in x4

to x6. Since x4 to x6 represent the angular speeds of the pendulum links, the increase in non-
linear coupling is fundamentally limited by the total amount of mechanical energy stored in the
pendulum. For a fixed amount of energy; however, the maximal coupling will be determined
by the values of the physical parameters mi and �i. In particular, one notices that all the
coupling terms are inversely proportional to one of the three lengths, so that the coupling can
be increased indefinitely by reducing one of the lengths. This is not the case for the mass
parameters, which dimensionally tend to ’cancel’ out in the coupling terms. For this reason
changes in the mass parameters, as opposed to changes in length, have less of an effect on the
overall coupling strength. This trend has been confirmed by numerical simulations.

Secondly, it is required in order to calculate the Lyapunov exponents accurately. The maximal
Lyapunov exponent provides a quantitative measure of a non-linear system’s sensitivity to initial
conditions. Although a variety of methods have been developed for the accurate computation of
Lyapunov exponents [12, 13], they invariably require analytical expressions for all the elements
of the Jacobian matrix

Jjk(x) =
∂fj

∂xk
(j, k = 1, . . . , 6) (3)

In dynamical systems for which the analytical expressions are not know, the Lyapunov exponents
can be estimated by, for example, fitting the time series with an analytical function through
least square minimisation [14]. Note that it is not sufficient to calculate the Jacobian matrix
numerically, because the sensitivity to numerical errors in calculations of this nature is extreme.
Therefore, in this work, equations (A.1) to (A.6) were used to obtain the required analytical
expressions for the Jacobian matrix.

3. Computational aspects and visualisation
A visualisation of the pendulum was developed in the Python programming language [11], using
the Visual module. In order to improve the efficiency of the numerical calculations, which involve
solving the system (2) in real time, the numerically intensive parts of the calculation were first
coded as two separate Fortran 90 subroutines. The first subroutine was used to calculate the
Lyapunov exponents according to the method of Chen et al. [13], and the second to integrate
the system of equations by calling the ISML subroutine dverk.f90. Note that the first subroutine
makes calls to the second in order to integrate the linearized system of n(n+1) equations (n = 6)
and returns the Lyapunov exponents in base e, as is the modern convention. A shared library
of the two main subroutines was created by using f2py [15]. Scipy.optimize was imported to
perform downhill simplex optimisation via the function fmin [16].

4. Results and discussion
In this section two examples of the optimisation technique are provided. In both examples the
starting parameter values and initial conditions were arbitrarily chosen and are the same for
both examples.

In the first, a periodic mode of the pendulum was calculated, with the result shown in figure 2.
This mode was obtained by optimising the initial conditions, with the starting parameters fixed.
After optimisation all the Lyapunov exponents were equal to zero, within the set numerical
tolerance of λmax ≤ 10−3.



Figure 2. A periodic mode of the un-damped
pendulum obtained through optimisation of
the initial condition. In this figure the
parameter values are �1 = �2 = �3 = 0.1m
and m1 = m2 = m3 = 0.1 kg. The starting
initial condition was arbitrarily chosen as
x1 = x2 = x3 = 1.5, with all the initial
velocities constrained to zero. The optimised
initial condition, which produces the periodic
motion shown, was obtained by demanding
λmax ≤ 0.001. The optimised initial
condition was found to be x1 = −0.06113,
x2 = 0.42713 and x3 = 2.01926.

In the second example a an extreme hyperchaotic mode was calculated, with the result shown
in figure 3. This mode was obtained by fixing the initial condition and optimising only the lengths

Figure 3. A hyperchaotic
mode of the un-damped pen-
dulum obtained through op-
timisation of the parame-
ters. The initial condition and
starting parameter values were
the same as in figure 1. Note
that, in both figures, one of
the two pedestals (shown in
gray) has been removed in or-
der to display the trajectory
followed by the centre of m3

more clearly.

and masses. In view of the analysis given just after equation (2), high values of the Lyapunov
exponents were expected for very small lengths. Indeed, in searching for optimised parameter sets
for the hyperchoatic modes of the pendulum, it was found that the lengths had to be constrained
to remain greater than zero. In this example the lengths were thus arbitrarily constrained to
be greater than 0.050m in order to ensure that the optimised system is physically realisable.
Optimisation of all six parameters could then be used to change the Lyapunov exponents from
their initial values of λ1 = 4.58 and λ2 = 1.81 (already hyperchaotic) to a predefined much
higher value of (in this example) λ1 > 10.0 ± 0.1. The optimised parameters were found to be
m1 = 0.106 kg, m2 = 0.098 kg, m3 = 0.123 kg, �1 = 0.187m, �2 = 0.050m and �3 = 0.051m.
The corresponding Lyapunov exponents were λ

′
1 = 10.06, λ

′
2 = 1.85 and λ

′
3 = 0.00. In other

calculations, which are not reported here, it was possible to optimise the parameters and initial
conditions simultaneously.

The above results are significant because there are relatively few real physical systems that
can be classified as hyperchaotic, with Lyapunov exponents in the range 2-3 or above.



5. Conclusion
The preliminary results reported in the present work show that the triple pendulum system is
hyperchaotic, and that its degree of chaos can be controlled through optimisation.

Although the method is based on the result of memory intensive algebraic simplifications of
the governing equations, it has the advantage of providing control over the Lyapunov exponents.
As examples of its use, the initial conditions for periodic motion (usually obtained via the less
efficient shooting method) were obtained and the maximal Lyapunov exponent of the same
system was enhanced by more than a factor of 2 by optimisation of the parameters alone.

The present article lays the theoretical and numerical foundation for a future in-depth analysis
of the hyperchaotic triple pendulum system. It provides an optimisation method that offers
precise control over the Lyapunov exponents. Such control may also be useful in a wide variety
of other non-linear applications, such as those occuring in biophysics and electrical engineering
(encryption).
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Appendix A. Equations of motion
ẋ1 = x4 (A.1)

ẋ2 = x5 (A.2)

ẋ3 = x6 (A.3)

ẋ4 =
�2�3g

4D

[
m1m
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3 (sin (x1 − 2x2 + 2x3) + sin (x1 + 2x2 − 2x3)) (A.4)
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ẋ5 =
�1�3g
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ẋ6 =
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where g = 9.81ms−2 is the gravitational acceleration and

D =
�1�2�3

2
m3

[
2m1m2 +m1m3 +m2m3 +m2

2 −m2 (m2 +m3) cos (2x1 − 2x2)

−m1m3 cos (2x2 − 2x3)
]

In equations (A.4) to (A.6), χ1, χ2 and χ3 represent additional terms; such as, those proportional
to the damping coefficients c1, c2 and c3, or in the case of a physical pendulum, the additional
terms involving moments of inertia. When the upper link of the pendulum is driven by a
harmonic force the six equations have to be supplemented by a seventh, namely ẋ7 = ω, where
ω is the angular frequency of the driving force [9]. The driving force also introduces additional
terms which are not included here in order to reduce the length of the printed expressions.
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