Kurchatov synchrotron: present state and upgrade program

R.A.Senin, A.V.Blagov, Y.V.Zubavichus, V.T.Em, E.Kh.Mukhamedzhanov, M.V.Kovalchuk

NRC Kurchatov Institute

senin_ra@nrcki.ru

Talk outline

- . Some historical points
- Present research
- Upgrade program
- New departments grown around synchrotron: Kurchatov Nano Bio Informatic and Cognitive sciences center- NBIC
- CREMLIN

KURCHATOV INSTITUTE HISTORY

12.04.**1943** Laboratory № 2 Academy of Sciences of the USSR

10.11.1956

1946 reactor, the first reactor in Eurasia F-1 startup

Institute of Atomic Energy

21.11.**1991** Russian Research Center Kurchatov Institute

1954 e. – the first in the world atomic power plant startup (Obninsk)

1958 e. – the second in the world nuclear – powered submarine "Leninsky Komsomol"

1959 e. - the first in th world atomic ice-breaker "Lenin"

Kurchatov synchrotron. Site before construction started. 1985

Operational since 1999

Renovated in 2007-2010

15 beamlines operatonal

Experimental hall before...

Beamlines:

Build defore upgade

Combined use of XAFS, XRD and SAXS

- **XANES** electronic structure and chemical state of heavy atoms, local environment symmetry
- EXAFS local neighborhood of a given heavy atom
- **XRD** long-range order in the sample, phase composition, degree of ordering in the sample
- **SAXS** sizes and forms of pores, second phase segregations and other inhomogeneities with sizes in the region of 1-100 nm

In-situ chamber for catalysis (since 2009) 20-550oC

- 3-component gas mixtures
- . Inerts: He, N2, Ar
- Oxidation and reduction: **O2, H2**
- Catalytic substrate: CO, CH4, etc.
- Vacuum 10 Pa

Thermostabilization through the heating current & thermocouple feedback ±1oC

 $4\times350\;W$

Cooling down to -130oC with

a flow of cold N2 gas

National Research Center "Kurchatov Institute" In-situ chamber measurement system Image Plate holder Sample load port SR IC:2 (*It*) IC1 (*I0*) EXAFS γ-Al2O3 **XANES**

Chemistry: Catalysts, hydrides, fullerenes and their compounds

EXAFS

Catalysts nanostructure study (Zn-activated zeolites for propane aromatization)

Zn K-edge XANES

Possible Zn active sites in ZSM-5

Fullerenes and their compounds

Compounds of fullerenes with burning gases and their derivatives

Storage system for liquids and gases

Reflection curve

X-ray diffraction experiments

1215848422132598879451235932345179461898631245785961342819861215478985 044221325986794512359323451794618986312457859613428198612154789652209508 2424845121584842213269887945123593234517946189863124578596134281986<u>12</u>15

Курчатовский НБИК Центр

Protein Crystallography

Single crystal protein diffraction

18 new structures solved last 2 years

 $215648422132598879451235932345179461898631245785961342819861215478965\\ 221325988794512359323451794618986312457859613428198612154789652209508\\ 248451215848422132598879451235932345179461898631245785961342819861215$

Effects in layered structures superconductor/ferromagnetic

20

2-D Yoneda scatteringmap

SR

"Structural Material Science" beamline

A – beam-defining section

- B sample-environmental
 - and
 - XAFS-measuring
- D detecting section

IMAGING

1mm

Newborn mouse and mouse embryo. Vovel size 10x10x10 micrometers

Space calcium loss experiments

Gekko and its spinal bone. Voxel size 2.5 µm

V.E.Asadchikov, R.A.Senin et al. Crystallography Reports, 2012, Vol. 57, No. 5, pp. 700–707.

New fuel elements for nuclear power plants

1- UO2, d=500 μm,
2- Low density carbon,
h=100μm,
3- High density carbon,

h=50 µm, слой

4 - SiC, h=50 µm,

Superconducting wire Nb3Sn for ITER

200 µm

Upgrade programm, Phase-I: 3 new beamlines

2424845121584842213259887945123593234517948189863124578596134281986<u>12</u>15

6+2 -Gonio HUBER (mod 5021)

Axis name	Angular resolution (arc sec)
Omega (horiz)	0.1
2Theta (horiz.)	0.36
Chi	0.72
Phi	0.72
Omega (vert)	0.36
2Theta (vert)	0.36
Omega analyser	0.36
2Theta-analyser	1.44

Experimental hutch – November 2012

The ARPES beamline – optics

The Mono for ARPES

Inside the mono

Mirror and 3 gratings (water cooled)

ARPES spectrometer

Upgrade programm, Phase-II: 10 new beamlines

3.1215848422132598879451235932345179461898631245785961342819861215478963 3.242484221325988794512359323451794618986312457859613428198612154789652209504 242484512158484221325988794512359323451794618986312457859613428198612213

The machine modernization

7.5 T SC Wiggler

Dispersion free straight section of Siberia-2

MPSCW: NbTi coils E=2.5 GeV, I=0.1-0.3 A B= 3 - 7.5 T, Npoles=19+2 λ wig = 164 mm Eph crit. = 31.2 keV Flux = (1014-1012) ph/s/0.1%BW Eph = 5 - 200 keV . $\Theta x \max = \pm 23.5 \mod 10^{-10}$ Ptot (100 mA) = 36.5 kW

2/2424545121585867845123595234517946169663124516596134261866121547685652209508 20248451215848422132598879451235932345179461898631245785961342819861216

New booster inside the existing ring

21584**5422132598879451235932345179461898631245785961342819861215478**5963 242484**5121325988794512359323451794618986312457859613428198612154789652209508** 242484**5121584842213259887945123593234517946189863124578596134281986<u>12</u>15**

Facilities around synchrotron

RESEARCH INFRASTRUCTURE

- . Kurchatov Synchrotron Radiation Center
- . Nuclear Research Reactor IR-8
- . Data Processing Center
- . Nanobiological Science&Technology Center

Automated crystallization system

JOINT RUSSIAN-JAPANESE PROJECT

Goal

Use of microgravity crystallization for growing high quality protein crystals

Total proteins	29
Crystallized (diffracting)	16
Unique datasets	51
Refined	31

CdS

5nm

Technical superconductivity department

And many others...

CREMLIN Project

Connecting Russian and European Measures for Large-scale Research Infrastructures (CREMLIN)

- > Submitted: 02.09.2014
- > 28.1.2015: green light by European Commission; excellent marks
- > Grant Agreement signed April 2015
- > CSA-Project (Cooperation and Support Action) under Horizon 2020
- > Duration: 3 years
- > Coordinator: DESY; Russian key partner: NRC "Kurchatov Institute"
- > Budget: ~1.7M€
- > Project ("action") start: 1 September 2015
- > Launch & Opening Conference: 7 8 October 2015, Moscow

CREMLIN in the map

PIK & SSRS-4: Gatchina

CREMLIN

CREMLIN targets at all 6 (5) Russian megascience projects:

Scientific and Research Reactor Complex PIK at PNPI Gatchina

- Nuclotron-based Ion Collider Facility NICA at JINR Dubna
- Fourth Generation Special-purpose Synchrotron Radiation Source SSRS-4,
- NRC "Kurchatov Institute" Moscow

Exawatt Center for Extreme Light Studies XCELS, IAP Nizhniy Novgorod

Super Tau-Charm Factory STC, BINP Novosibirsk
(IGNITOR Tokamak Fusion Reactor, initiated by NRC Kurchatov Institute)

Thank you for your attention and welcome to NRC Kurchatov institute