Use of diffraction in determine the residual stress of HVOF WC-17Co coatings

O.P. Oladijo^{1,2,3}, L.A. Cornish^{2,3} T.P Ntsoane⁴, N. Sacks^{2,3} and A.M. Venter^{3,4}

¹ Department of Chemical, Material and Metallurgical Engineering, Botswana International University of Science and Technology

² School of Chemical and Metallurgical Engineering, University of the Witwatersrand

³ DST/NRF Centre of Excellence in Strong Materials

⁴ South African Nuclear Energy Corporation (Necsa)

Introduction

- Thermal spray WC-Co coatings protect substrates against different environments and loads e.g. abrasive wear, high temperatures, chemically aggressive fluids and hot gas corrosion.
- WC-Co cermet composites are widely used, owing to their high hardness, reasonable toughness and excellent wear resistance [1].
- Residual stresses are a contributing factor in shortening service life for thermal spray coatings [2].
- decreased bending strength, fatigue life and bond strength Residual stresses in thermal spray coatings are responsible for

Factors influencing the generation of residual stresses in thermal spray coating

Aims and objectives

- Identifying & understanding the nature of stresses between the coating and substrate.
- To study the microstructures of HVOF sprayed WC-Co coatings on different metal substrates.
- To explore systematically the residual strains measured by different techniques, i.e. X-ray diffraction, synchrotron XRD and neutron diffraction.
- This project should assist users of coatings in matching substrates and coatings and/or selecting the deposition procedure.

Experimental procedure

- Commercially available WC-17Co powder was used as the feedstock.
- Five different substrates: 304L SS, brass, aluminium, super-invar and mild steel of 25x25x6mm sample size were thermally sprayed by HVOF.
- Samples were studied in: as-sprayed, grit-blasted and annealed gritblasted conditions.
- XRD, SEM-EDX and Vickers hardness tests were undertaken.

High Velocity Oxyl-fuel (HVOF)

Advantages of HVOF [4]:

- High velocity and low oxygen.
- Lower decarburization.

• Coatings have low porosity and high bond strength.

Typically used to deposit wear and corrosion resistant coatings on materials, while protecting from oxidation.

Sample cutting and measuring position

D8 Discover X-ray diffractometer

Sample stage collimator

Laser video camera

detector

OF SCIENCE & TECHNOLOGY

Measurement details

Parameters used:

- Bragg peak: 112_{WC} reflections (2 φ = 92.093°)
- Radiation: Co
- Azimuth orientation ϕ : 0, 180, 90, 270, 45 and 225°
- Tilt angle ψ : 0.0 70.0°
- Steps $\Delta \psi : 10^{\circ}$
- Software: Leptos V6

XRD Synchrotron measurement

OTSWANA INTERNATIONAL UNIVERSITY OF SCIENCE & TECHNOLOGY

BOTSWANA INTERNATIONAL UNIVERSITY OF SCIENCE & TECHNOLOGY

Results and Discussion

Residual stress of WC-Co coatings measured by X-ray diffraction

Residual strain depth profile for a coated stainless steel

Residual stain depth profile for the coated brass

Residual strain depth profile of a coated Super-Invar

Results: Coated brass sample

3:42:15 PM ETD 2000 x 150 µm 30.00 kV 15.2 mm 0.18 nA

SEM-BSE images of WC-Co coating on brass substrate.

Element	wt%	at.%		
СК	09.1	34.7		
OK	03.8	10.9		
WM	25.8	06.5		
CoK	61.4	47.9		

OHANNESBUR

Energy - keV						
Element	wt%	at.%				
СК	12.4	59.1				
WM	66.9	20.8				
СоК	20.7	20.1				

Element	wt%	at.%
СК	10.3	57.6
WM	77.2	28.2
СоК	12.5	14.2

STY OF THE WITH SEM-BSE image and EDX results of WC-Co coating on brass cross-section showing (Co) (grey), WC (light) and pore (black).

XRD results

Materials characteristics

	Wear mass	HV Coating		Phases		Porosity	WC grain size
Substrate	loss (g)	(GPa)		(from XRD)			
		Substrate	ubstrate Coating		Coating	(%)	(µm)
Alpha brass							
	0.073±0.010	1.29±0.01	6.60±0.01	Cu ₅ Zn ₃ , Zn	WC, Co	0.630±0.1	1.00±0.2
$(Cu_{63}:Zn_{37})$							
Super-invar	0.161±0.010	1.35±0.01	7.53±0.01	FeNi, C	WC, Co Co ₆ W ₆ C	0.863±0.2	0.83±0.1
$(Fe_{64}:Ni_{36})$					0 0		
Mild steel	0.084±0.010	1.25±0.01	7.01±0.01	Fe, Ni	WC, Co, Co ₆ W ₆ C	0.570±0.1	1.07±0.2
2xxx aluminium alloy	0.057±0.010	1.45±0.01	8.55±0.01	Al	WC, Co	0.618±0.1	0.94±0.2
304L stainless steel	0.066±0.010	1.74±0.02	9.11±0.01	Fe, Ni, Cr	WC, Co	0.436±0.2	1.14±0.2

Summary of residual stresses in substrates and coatings

Material	CTE (10 ⁻⁶ /K)	Reflection	DEC (TPa ⁻¹)		Residual stress in grit- blast substrates (MPa)		Residual stress in as- coated coatings (MPa)	
			S ₁	¹ / ₂ S ₂	XRD	SR [6]	XRD	SR [6]
WC-17Co	2	WC (101)	-0.321	1.707				
Aluminium	23	Al (3110	-5.05	19.462	-160 ± 10	-200 ± 25	-15.7 ± 17	-160 ± 50
Brass	19	Cu (311)	-2.902	11.106	-123 ± 10	-303 ± 25	-53.5 ± 28	-40 ± 25
304L SS	17	Fe (311)	-1.598	7.034	-159 ± 36	-458 ± 25	24.6 ± 19	22 ± 50
Mild steel	12	Fe (211)	-1.26	5.72	-172 ± 23	-441 ± 25	30.5 ± 19	60 ± 50
Super invar	≤1	Ni (200)	-1.91	7.539	-251 ± 10	-695 ± 25	74 ± 31	288 ± 25

Conclusions

- The residual stresses were tensile for the as-sprayed coatings on all substrates, except for coated aluminium and brass which were compressive. Compressive stresses were found in the other conditions due to effect of heat treatment.
- An order of magnitude correlation was found between the residual stress in the coatings determined by X-ray diffraction and Synchrotron XRD measurements, although they were fairly different due to their respective collimator or gauge volume.
- The residual stresses found on the as-sprayed coatings were quite different from each other due to their coefficients of thermal expansion.
- Moderate compressive residual stresses gave better abrasive wear resistance, whereas coatings with high tensile stresses yielded low wear resistance.

References

[1] Oladijo O.P. *et al.* (2012). Surface Coatings Technology, 206, 4725-4729.

[2] Gudge M. *et al.* (1991). Thermal Spray Research and Applications, ASM International, 331-337.

[3] Kuroda S. *et al.* (1992). Thermal spray: International Advances in Coatings Technology, ASM International, 903-909.

[4] www. thermaspray.co.za

[5] Noyan I.C. and Cohen J.B. (1987) Residual Stress Measurement by Diffraction and Interpretation, New York, Springer-Verlag.

[6] Venter A.M. *et al.* (2012) Surface Coatings Technology, 206, 4011-4020.

Acknowledgements

- 1. Mr T.P. Ntsoane, Necsa
- 2. European Synchrotron Research Facility (ESRF)
- 3. ANSTO, Australia
- 4. National Research Foundation

Thank 1 **)1**].

